-
1
-
-
33747762229
-
Exploiting the enhanced permeability and retention effect for tumor targeting
-
Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today. 2006;11:812-818.
-
(2006)
Drug Discovery Today.
, vol.11
, pp. 812-818
-
-
Iyer, A.K.1
Khaled, G.2
Fang, J.3
-
2
-
-
84876534007
-
Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology
-
Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412-2417.
-
(2013)
Cancer Res.
, vol.73
, pp. 2412-2417
-
-
Prabhakar, U.1
Maeda, H.2
Jain, R.K.3
-
3
-
-
84873268296
-
The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo
-
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 2013;65:71-79.
-
(2013)
Adv. Drug Delivery Rev.
, vol.65
, pp. 71-79
-
-
Maeda, H.1
Nakamura, H.2
Fang, J.3
-
4
-
-
84923842167
-
Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles
-
Liang J, Wu W, Lai D, et al. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles. J. Biomater. Sci. Polym. Ed. 2015;26:369-383.
-
(2015)
J. Biomater. Sci. Polym. Ed.
, vol.26
, pp. 369-383
-
-
Liang, J.1
Wu, W.2
Lai, D.3
-
5
-
-
84870250531
-
PEGylated nanoparticles for biological and pharmaceutical applications
-
Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Delivery Rev. 2012;64:246-255.
-
(2012)
Adv. Drug Delivery Rev.
, vol.64
, pp. 246-255
-
-
Otsuka, H.1
Nagasaki, Y.2
Kataoka, K.3
-
6
-
-
36849012080
-
Self-assembled thermosensitive micelles based on poly(Llactide-star block-N-isopropylacrylamide) for drug delivery
-
Wei H, Zhang X-Z, Chen W-Q, et al. Self-assembled thermosensitive micelles based on poly(Llactide-star block-N-isopropylacrylamide) for drug delivery. J. Biomed. Mater. Res. Part A. 2007;83A:980-989.
-
(2007)
J. Biomed. Mater. Res. Part A.
, vol.83 A
, pp. 980-989
-
-
Wei, H.1
Zhang, X.-Z.2
Chen, W.-Q.3
-
8
-
-
37549054058
-
Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability
-
Zhang J, Jiang X, Zhang Y, et al. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules. 2007;40:9125-9132.
-
(2007)
Macromolecules.
, vol.40
, pp. 9125-9132
-
-
Zhang, J.1
Jiang, X.2
Zhang, Y.3
-
9
-
-
76749128372
-
PH-sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles
-
Chen W, Meng F, Cheng R, et al. pH-sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. J. Controlled Release. 2010;142:40-46.
-
(2010)
J. Controlled Release.
, vol.142
, pp. 40-46
-
-
Chen, W.1
Meng, F.2
Cheng, R.3
-
10
-
-
35248871058
-
Sustained delivery of IL-1Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases
-
Lavi G, Voronov E, Dinarello CA, et al. Sustained delivery of IL-1Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases. J. Controlled Release. 2007;123:123-130.
-
(2007)
J. Controlled Release.
, vol.123
, pp. 123-130
-
-
Lavi, G.1
Voronov, E.2
Dinarello, C.A.3
-
11
-
-
84868316414
-
Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers
-
Song W, Li M, Tang Z, et al. Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers. Macromol. Biosci. 2012;12:1514-1523.
-
(2012)
Macromol. Biosci.
, vol.12
, pp. 1514-1523
-
-
Song, W.1
Li, M.2
Tang, Z.3
-
12
-
-
66749137569
-
Synthesis and aggregation behavior of multi-responsive double hydrophilic ABC miktoarm star terpolymer
-
Zhang Y, Liu H, Hu J, et al. Synthesis and aggregation behavior of multi-responsive double hydrophilic ABC miktoarm star terpolymer. Macromol. Rapid Commun. 2009;30:941-947.
-
(2009)
Macromol. Rapid Commun.
, vol.30
, pp. 941-947
-
-
Zhang, Y.1
Liu, H.2
Hu, J.3
-
13
-
-
38049047512
-
"Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer
-
Rao J, Luo Z, Ge Z, et al. "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer. Biomacromolecules. 2007;8:3871-3878.
-
(2007)
Biomacromolecules.
, vol.8
, pp. 3871-3878
-
-
Rao, J.1
Luo, Z.2
Ge, Z.3
-
14
-
-
84866900814
-
Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels
-
Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev. 2012;41:5933-5949.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 5933-5949
-
-
Hu, J.1
Zhang, G.2
Liu, S.3
-
15
-
-
84872723149
-
PH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery
-
Li M, Tang Z, Sun H, et al. pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polym. Chem. 2013;4:1199-1207.
-
(2013)
Polym. Chem.
, vol.4
, pp. 1199-1207
-
-
Li, M.1
Tang, Z.2
Sun, H.3
-
16
-
-
84890175659
-
Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery
-
Thambi T, Deepagan VG, Yoon HY, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials. 2014;35:1735-1743.
-
(2014)
Biomaterials.
, vol.35
, pp. 1735-1743
-
-
Thambi, T.1
Deepagan, V.G.2
Yoon, H.Y.3
-
17
-
-
0035925098
-
Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects
-
Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. National Cancer Inst. 2001;93:266-276.
-
(2001)
J. National Cancer Inst.
, vol.93
, pp. 266-276
-
-
Hockel, M.1
Vaupel, P.2
-
18
-
-
0036359548
-
HYPOXIA-a key regulatory factor in tumour growth
-
Harris AL. HYPOXIA-a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2002;2: 38-47.
-
(2002)
Nat. Rev. Cancer.
, vol.2
, pp. 38-47
-
-
Harris, A.L.1
-
19
-
-
2942590732
-
Exploiting tumour hypoxia in cancer treatment
-
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004;4:437-447.
-
(2004)
Nat. Rev. Cancer.
, vol.4
, pp. 437-447
-
-
Brown, J.M.1
Wilson, W.R.2
-
20
-
-
44449099768
-
Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke
-
Takasawa M, Moustafa RR, Baron J-C. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke. 2008;39:1629-1637.
-
(2008)
Stroke.
, vol.39
, pp. 1629-1637
-
-
Takasawa, M.1
Moustafa, R.R.2
Baron, J.-C.3
-
21
-
-
79957534572
-
Targeting hypoxia in cancer therapy
-
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer. 2011;11:393-410.
-
(2011)
Nat. Rev. Cancer.
, vol.11
, pp. 393-410
-
-
Wilson, W.R.1
Hay, M.P.2
-
22
-
-
79960720315
-
Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery
-
Ding J, Zhuang X, Xiao C, et al. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. J. Mater. Chem. 2011;21:11383-11391.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 11383-11391
-
-
Ding, J.1
Zhuang, X.2
Xiao, C.3
-
23
-
-
84887954229
-
Hypoxia-targeting carbonic anhydrase IX inhibitors by a new series of nitroimidazole-sulfonamides/sulfamides/sulfamates
-
Rami M, Dubois L, Parvathaneni N-K, et al. Hypoxia-targeting carbonic anhydrase ix inhibitors by a new series of nitroimidazole-sulfonamides/sulfamides/sulfamates. J. Med. Chem. 2013;56:8512-8520.
-
(2013)
J. Med. Chem.
, vol.56
, pp. 8512-8520
-
-
Rami, M.1
Dubois, L.2
Parvathaneni, N.-K.3
-
24
-
-
84934436583
-
Hypoxia-directed drug strategies to target the tumor microenvironment
-
In: Constantinos K, Ester H, Amato G, editors. New York: Springer
-
Hay MP, Hicks KO, Wang J. Hypoxia-directed drug strategies to target the tumor microenvironment. In: Constantinos K, Ester H, Amato G, editors. Tumor Microenvironment and Cellular Stress. New York: Springer; 2014. p. 111-145.
-
(2014)
Tumor Microenvironment and Cellular Stress
, pp. 111-145
-
-
Hay, M.P.1
Hicks, K.O.2
Wang, J.3
-
25
-
-
84881669612
-
Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy
-
Yang Y, Pan D, Luo K, et al. Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials. 2013;34:8430-8443.
-
(2013)
Biomaterials.
, vol.34
, pp. 8430-8443
-
-
Yang, Y.1
Pan, D.2
Luo, K.3
-
26
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751-760.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
-
27
-
-
84907232102
-
Synthesis and characterization of dendritic star-shaped zwitterionic polymers as novel anticancer drug delivery carriers
-
Li L, Wang Y, Ji F, et al. Synthesis and characterization of dendritic star-shaped zwitterionic polymers as novel anticancer drug delivery carriers. J. Biomater. Sci. Polym. Ed. 2014;25:1641-1657.
-
(2014)
J. Biomater. Sci. Polym. Ed.
, vol.25
, pp. 1641-1657
-
-
Li, L.1
Wang, Y.2
Ji, F.3
-
28
-
-
84894938515
-
Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin
-
Song W, Tang Z, Zhang D, et al. Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials. 2014;35:3005-3014.
-
(2014)
Biomaterials.
, vol.35
, pp. 3005-3014
-
-
Song, W.1
Tang, Z.2
Zhang, D.3
-
29
-
-
84895071925
-
Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects
-
Song W, Tang Z, Li M, et al. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater. 2014;10:1392-1402.
-
(2014)
Acta Biomater.
, vol.10
, pp. 1392-1402
-
-
Song, W.1
Tang, Z.2
Li, M.3
-
30
-
-
84899995755
-
Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer
-
Lv S, Tang Z, Li M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials. 2014;35:6118-6129.
-
(2014)
Biomaterials.
, vol.35
, pp. 6118-6129
-
-
Lv, S.1
Tang, Z.2
Li, M.3
-
31
-
-
84902346219
-
A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation
-
Li Q, Lv S, Tang Z, et al. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. Int. J. Pharm. 2014;471:412-420.
-
(2014)
Int. J. Pharm.
, vol.471
, pp. 412-420
-
-
Li, Q.1
Lv, S.2
Tang, Z.3
-
32
-
-
84875047914
-
Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer
-
Li M, Song W, Tang Z, et al. Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces. 2013;5:1781-1792.
-
(2013)
ACS Appl. Mater. Interfaces.
, vol.5
, pp. 1781-1792
-
-
Li, M.1
Song, W.2
Tang, Z.3
-
33
-
-
84938943489
-
Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy
-
Yu H, Tang Z, Zhang D, et al. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy. J. Control Release. 2015;205: 89-97.
-
(2015)
J. Control Release.
, vol.205
, pp. 89-97
-
-
Yu, H.1
Tang, Z.2
Zhang, D.3
-
34
-
-
84925305401
-
Cisplatin-loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) nanoparticlesas a potential chemotherapeutic agent against osteosarcoma
-
Yifei Li, Y H, Sun Hai, et al Cisplatin-loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) nanoparticlesas a potential chemotherapeutic agent against osteosarcoma. Chin. J. Polym. Sci. 2015;33:763-771.
-
(2015)
Chin. J. Polym. Sci.
, vol.33
, pp. 763-771
-
-
Yifei Li, Y.H.1
Hai, S.2
-
35
-
-
84908029112
-
Cisplatin loaded methoxy poly (ethylene glycol)-blockpoly (L-glutamic acid-co-L-phenylalanine) nanoparticles against human breast cancer cell
-
Ahmad Z, Tang Z, Shah A, et al. Cisplatin loaded methoxy poly (ethylene glycol)-blockpoly (L-glutamic acid-co-L-phenylalanine) nanoparticles against human breast cancer cell. Macromol. Biosci. 2014;14:1337-1345.
-
(2014)
Macromol. Biosci.
, vol.14
, pp. 1337-1345
-
-
Ahmad, Z.1
Tang, Z.2
Shah, A.3
-
36
-
-
84862192110
-
Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH
-
Zhao L, Ding J, Xiao C, et al. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. J. Mater. Chem. 2012;22:12319-12328.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 12319-12328
-
-
Zhao, L.1
Ding, J.2
Xiao, C.3
-
37
-
-
67449084321
-
Preclinical and clinical studies of anticancer agent-incorporating polymer micelles
-
Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572-579.
-
(2009)
Cancer Sci.
, vol.100
, pp. 572-579
-
-
Matsumura, Y.1
Kataoka, K.2
-
38
-
-
79953112735
-
Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect
-
Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv. Drug Delivery Rev. 2011;63:184-192.
-
(2011)
Adv. Drug Delivery Rev.
, vol.63
, pp. 184-192
-
-
Matsumura, Y.1
-
39
-
-
10844293438
-
Phase i clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin
-
Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer. 2004;91:1775-1781.
-
(2004)
Br. J. Cancer.
, vol.91
, pp. 1775-1781
-
-
Matsumura, Y.1
Hamaguchi, T.2
Ura, T.3
-
40
-
-
79951682119
-
A phase i clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours
-
Plummer R, Wilson RH, Calvert H, et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer. 2011;104:593-598.
-
(2011)
Br. J. Cancer.
, vol.104
, pp. 593-598
-
-
Plummer, R.1
Wilson, R.H.2
Calvert, H.3
-
41
-
-
0027522732
-
Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action
-
Edwards DI. Nitroimidazole drugs-action and resistance mechanisms I. mechanism of action. J. Antimicrob. Chemother. 1993;31:9-20.
-
(1993)
J. Antimicrob. Chemother.
, vol.31
, pp. 9-20
-
-
Edwards, D.I.1
-
42
-
-
79957635293
-
Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia
-
Carreau A, Hafny-Rahbi BE, Matejuk A, et al. Why is the partial oxygen pressure of human tissues a crucial parameter? small molecules and hypoxia. J. Cell. Mol. Med. 2011;15:1239-1253.
-
(2011)
J. Cell. Mol. Med.
, vol.15
, pp. 1239-1253
-
-
Carreau, A.1
Hafny-Rahbi, B.E.2
Matejuk, A.3
|