-
1
-
-
85000710789
-
Global convergence of a non-convex Douglas–Rachford iteration
-
Aragón, A.F., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Global Optim. 57, 1–17 (2012)
-
(2012)
J. Global Optim.
, vol.57
, pp. 1-17
-
-
Aragón, A.F.1
Borwein, J.M.2
-
2
-
-
84911888099
-
Douglas–Rachford feasibility methods for matrix completion problems
-
Aragón, A.F., Borwein, J.M., Tam, M.K.: Douglas–Rachford feasibility methods for matrix completion problems. ANZIAM J. 55, 299–326 (2014)
-
(2014)
ANZIAM J.
, vol.55
, pp. 299-326
-
-
Aragón, A.F.1
Borwein, J.M.2
Tam, M.K.3
-
3
-
-
84941996535
-
Recent results on Douglas–Rachford methods for combinatorial optimization problems
-
Aragón, A.F., Borwein, J.M., Tam, M.K.: Recent results on Douglas–Rachford methods for combinatorial optimization problems. J. Optim. Theory Appl. 163, 1–30 (2014)
-
(2014)
J. Optim. Theory Appl.
, vol.163
, pp. 1-30
-
-
Aragón, A.F.1
Borwein, J.M.2
Tam, M.K.3
-
4
-
-
77953092582
-
Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka–Lojasiewicz inequality
-
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka–Lojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)
-
(2010)
Math. Oper. Res.
, vol.35
, pp. 438-457
-
-
Attouch, H.1
Bolte, J.2
Redont, P.3
Soubeyran, A.4
-
5
-
-
84877887498
-
Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods
-
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137, 91–129 (2013)
-
(2013)
Math. Program.
, vol.137
, pp. 91-129
-
-
Attouch, H.1
Bolte, J.2
Svaiter, B.F.3
-
6
-
-
0001448913
-
On the convergence of von Neumann’s alternating projection algorithm for two sets
-
Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)
-
(1993)
Set-Valued Anal.
, vol.1
, pp. 185-212
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
7
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
-
(1996)
SIAM Rev.
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
9
-
-
84903905014
-
On the local convergence of the Douglas–Rachford algorithm
-
Bauschke, H.H., Noll, D.: On the local convergence of the Douglas–Rachford algorithm. Arch. Math. 102, 589–600 (2014)
-
(2014)
Arch. Math
, vol.102
, pp. 589-600
-
-
Bauschke, H.H.1
Noll, D.2
-
10
-
-
36249023228
-
The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
-
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)
-
(2007)
SIAM J. Optim.
, vol.17
, pp. 1205-1223
-
-
Bolte, J.1
Daniilidis, A.2
Lewis, A.3
-
11
-
-
35348955638
-
Clarke subgradients of stratifiable functions
-
Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18, 556–572 (2007)
-
(2007)
SIAM J. Optim.
, vol.18
, pp. 556-572
-
-
Bolte, J.1
Daniilidis, A.2
Lewis, A.3
Shiota, M.4
-
12
-
-
84897562389
-
Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets
-
Borwein, J.M., Li, G., Yao, L.J.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim. 24, 498–527 (2014)
-
(2014)
SIAM J. Optim.
, vol.24
, pp. 498-527
-
-
Borwein, J.M.1
Li, G.2
Yao, L.J.3
-
13
-
-
39449085530
-
A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery
-
Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Proces. 1, 564–574 (2007)
-
(2007)
IEEE J. Sel. Top. Signal Proces.
, vol.1
, pp. 564-574
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
14
-
-
84967782959
-
On the numerical solution of heat conduction problems in two or three space variables
-
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
-
(1956)
Trans. Am. Math. Soc.
, vol.82
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.H.2
-
15
-
-
34249837486
-
On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators
-
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
-
(1992)
Math. Program.
, vol.55
, pp. 293-318
-
-
Eckstein, J.1
Bertsekas, D.P.2
-
16
-
-
79551661156
-
Tensor completion and low- n -rank tensor recovery via convex optimization
-
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low- n -rank tensor recovery via convex optimization. Inverse Probl. 27, 025010 (2011)
-
(2011)
Inverse Probl.
, vol.27
, pp. 025010
-
-
Gandy, S.1
Recht, B.2
Yamada, I.3
-
17
-
-
84897545592
-
A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
-
Gong, P., Zhang, C., Lu, Z., Huang, J., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: The 30th International Conference on Machine Learning (ICML 2013)
-
(2013)
The 30th International Conference on Machine Learning (ICML
-
-
Gong, P.1
Zhang, C.2
Lu, Z.3
Huang, J.4
Ye, J.5
-
18
-
-
84861398963
-
On the O(1 / n) convergence rate of the Douglas–Rachford alternating direction method
-
He, B., Yuan, X.: On the O(1 / n) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
-
(2012)
SIAM J. Numer. Anal.
, vol.50
, pp. 700-709
-
-
He, B.1
Yuan, X.2
-
19
-
-
84892884190
-
Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems
-
Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23, 2397–2419 (2013)
-
(2013)
SIAM J. Optim.
, vol.23
, pp. 2397-2419
-
-
Hesse, R.1
Luke, D.R.2
-
20
-
-
84906860875
-
Alternating projections and Douglas–Rachford for sparse affine feasibility
-
Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas–Rachford for sparse affine feasibility. IEEE Trans. Signal. Proces. 62, 4868–4881 (2014)
-
(2014)
IEEE Trans. Signal. Proces.
, vol.62
, pp. 4868-4881
-
-
Hesse, R.1
Luke, D.R.2
Neumann, P.3
-
21
-
-
70349387487
-
Local convergence for alternating and averaged nonconvex projections
-
Lewis, A.S., Luke, D.R., Malick, J.: Local convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)
-
(2009)
Found. Comput. Math.
, vol.9
, pp. 485-513
-
-
Lewis, A.S.1
Luke, D.R.2
Malick, J.3
-
22
-
-
48549094732
-
Alternating projections on manifolds
-
Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)
-
(2008)
Math. Oper. Res.
, vol.33
, pp. 216-234
-
-
Lewis, A.S.1
Malick, J.2
-
23
-
-
84941992975
-
New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors
-
Li, G., Mordukhovich, B.S., Pham, T.S.: 153, 333–362
-
Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Program. 153, 333–362 (2015)
-
(2015)
Math. Program.
-
-
-
24
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, pp. 964-979
-
-
Lions, P.-L.1
Mercier, B.2
-
25
-
-
84892875448
-
Sparse approximation via penalty decomposition methods
-
Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23, 2448–2478 (2013)
-
(2013)
SIAM J. Optim.
, vol.23
, pp. 2448-2478
-
-
Lu, Z.1
Zhang, Y.2
-
26
-
-
50049097331
-
Finding best approximation pairs relative to a convex and a prox-regular set in Hilbert space
-
Luke, D.R.: Finding best approximation pairs relative to a convex and a prox-regular set in Hilbert space. SIAM J. Optim. 19, 714–739 (2008)
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 714-739
-
-
Luke, D.R.1
-
27
-
-
84963844934
-
Douglas–Rachford splitting: complexity estimates and accelerated variants
-
IEEE, Los Angeles, CA
-
Patrinos, P., Stella, L., Bemporad, A.: Douglas–Rachford splitting: complexity estimates and accelerated variants. In: Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 4234–4239. IEEE, Los Angeles, CA (2014)
-
(2014)
Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC)
, pp. 4234-4239
-
-
Patrinos, P.1
Stella, L.2
Bemporad, A.3
-
28
-
-
84981701928
-
Linear convergence of the Douglas–Rachford method for two closed sets
-
Phan, H.: Linear convergence of the Douglas–Rachford method for two closed sets. Optimization. arXiv:1401.6509
-
Optimization
, pp. 6509
-
-
Phan, H.1
-
29
-
-
23044523810
-
Local differentiability of distance functions
-
Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)
-
(2000)
Trans. Am. Math. Soc.
, vol.352
, pp. 5231-5249
-
-
Poliquin, R.A.1
Rockafellar, R.T.2
Thibault, L.3
-
31
-
-
84940394631
-
A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type of constraints. SIAM
-
Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type of constraints. SIAM J. Optim. 25, 882–915 (2015)
-
(2015)
J. Optim
, vol.25
, pp. 882-915
-
-
Sun, D.1
Toh, K.-C.2
Yang, L.3
-
32
-
-
84898680921
-
1 / 2 regularization: convergence of iterative half thresholding algorithm
-
1 / 2 regularization: convergence of iterative half thresholding algorithm. IEEE Trans. Signal Process. 62, 2317–2329 (2014)
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, pp. 2317-2329
-
-
Zeng, J.1
Lin, S.2
Wang, Y.3
Xu, Z.4
|