-
1
-
-
84903726362
-
The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle
-
[Online]. DOI 10.1016/j.jat.2014.06.002
-
H. H. Bauschke, J. Y. B. Cruz, T. T. A. Nghia, H. M. Phan, and X. Wang, "The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle," J. Approx. Theory [Online]. Available: DOI 10.1016/j.jat.2014.06.002
-
J. Approx. Theory
-
-
Bauschke, H.H.1
Cruz, J.Y.B.2
Nghia, T.T.A.3
Phan, H.M.4
Wang, X.5
-
2
-
-
0001448913
-
On the convergence of von Neumanns alternating projection algorithm for two sets
-
H. H. Bauschke and J. M. Borwein, "On the convergence of von Neumanns alternating projection algorithm for two sets," Set-Valued Anal., vol. 1, no. 2, pp. 185-212, 1993.
-
(1993)
Set-Valued Anal.
, vol.1
, Issue.2
, pp. 185-212
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
3
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
H. H. Bauschke and J. M. Borwein, "On projection algorithms for solving convex feasibility problems," SIAM Rev., vol. 38, no. 3, pp. 367-426, 1996.
-
(1996)
SIAM Rev.
, vol.38
, Issue.3
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
5
-
-
2942687455
-
Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
-
H. H. Bauschke, P. L. Combettes, and D. R. Luke, "Finding best approximation pairs relative to two closed convex sets in Hilbert spaces," J. Approx. Theory, vol. 127, pp. 178-314, 2004.
-
(2004)
J. Approx. Theory
, vol.127
, pp. 178-314
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
6
-
-
33745856582
-
A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space
-
H. H. Bauschke, P. L. Combettes, and D. R. Luke, "A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space," J. Approx. Theory, vol. 141, no. 1, pp. 63-69, 2006.
-
(2006)
J. Approx. Theory
, vol.141
, Issue.1
, pp. 63-69
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
7
-
-
84881222107
-
Restricted normal cones and the method of alternating projections: Applications
-
H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang, "Restricted normal cones and the method of alternating projections: Applications," Set-Valued and Variat. Anal., vol. 21, pp. 475-501, 2013.
-
(2013)
Set-Valued and Variat. Anal.
, vol.21
, pp. 475-501
-
-
Bauschke, H.H.1
Luke, D.R.2
Phan, H.M.3
Wang, X.4
-
8
-
-
84881222107
-
Restricted normal cones and the method of alternating projections: Theory
-
H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang, "Restricted normal cones and the method of alternating projections: Theory," Set- Valued and Variat. Anal., vol. 21, pp. 431-473, 2013.
-
(2013)
Set- Valued and Variat. Anal.
, vol.21
, pp. 431-473
-
-
Bauschke, H.H.1
Luke, D.R.2
Phan, H.M.3
Wang, X.4
-
9
-
-
84895063527
-
Restricted normal cones and sparsity optimizationwith affine constraints
-
H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang, "Restricted normal cones and sparsity optimizationwith affine constraints," Found. Computat. Math., vol. 14, no. 1, pp. 63-83, 2014.
-
(2014)
Found. Computat. Math.
, vol.14
, Issue.1
, pp. 63-83
-
-
Bauschke, H.H.1
Luke, D.R.2
Phan, H.M.3
Wang, X.4
-
11
-
-
84976509864
-
A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems
-
H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz, Eds. New York, NY, USA: Springer-Verlag
-
A. Beck andM. Teboulle, "A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems," in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz, Eds. New York, NY, USA: Springer-Verlag, 2011, pp. 33-48.
-
(2011)
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications
, pp. 33-48
-
-
Beck, A.1
Teboulle, M.2
-
12
-
-
69949164527
-
Iterative hard thresholding for compressed sensing
-
T. Blumensath and M. Davies, "Iterative hard thresholding for compressed sensing," Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265-274, 2009.
-
(2009)
Appl. Comput. Harmon. Anal.
, vol.27
, Issue.3
, pp. 265-274
-
-
Blumensath, T.1
Davies, M.2
-
13
-
-
77949703326
-
Normalised iterative hard thresholding; Guaranteed stability and performance
-
Apr.
-
T. Blumensath and M. Davies, "Normalised iterative hard thresholding; guaranteed stability and performance," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 298-309, Apr. 2010.
-
(2010)
IEEE J. Sel. Topics Signal Process.
, vol.4
, Issue.2
, pp. 298-309
-
-
Blumensath, T.1
Davies, M.2
-
14
-
-
84976467096
-
0 function
-
H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz, Eds. New York: Springer
-
0 function," in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz, Eds. New York: Springer, 2011, pp. 65-92.
-
(2011)
Fixed-Point Algorithms for Inverse Problems in Science and Engineering
, pp. 65-92
-
-
Borwein, J.M.1
Luke, D.R.2
-
15
-
-
84875874870
-
Phase retrieval via matrix completion
-
E. J. Candés, Y. Eldar, T. Strohmer, and V. Voroninski, "Phase retrieval via matrix completion," SIAM J. Imaging Sci., vol. 6, no. 1, pp. 199-225, 2011.
-
(2011)
SIAM J. Imaging Sci.
, vol.6
, Issue.1
, pp. 199-225
-
-
Candés, E.J.1
Eldar, Y.2
Strohmer, T.3
Voroninski, V.4
-
16
-
-
29144439194
-
Decoding by linear programming
-
Dec.
-
E. J. Candés and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
-
(2005)
IEEE Trans. Inf. Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candés, E.J.1
Tao, T.2
-
18
-
-
0025535641
-
Method of successive projections for finding a common point of sets inmetric spaces
-
P. L. Combettes and H. J. Trussell, "Method of successive projections for finding a common point of sets inmetric spaces," J. Optimiz. Theory Appl., vol. 67, pp. 487-507, 1990.
-
(1990)
J. Optimiz. Theory Appl.
, vol.67
, pp. 487-507
-
-
Combettes, P.L.1
Trussell, H.J.2
-
21
-
-
84892884190
-
Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems
-
R. Hesse and D. R. Luke, "Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems," SIAM J. Optimiz., vol. 23-24, pp. 2397-2419, 2013.
-
(2013)
SIAM J. Optimiz.
, vol.23-24
, pp. 2397-2419
-
-
Hesse, R.1
Luke, D.R.2
-
22
-
-
84879693654
-
When only global optimization matters
-
J.-B. Hiriart-Urruty, "When only global optimization matters," J. Global Optimiz., vol. 56, no. 3, pp. 761-763, 2013.
-
(2013)
J. Global Optimiz.
, vol.56
, Issue.3
, pp. 761-763
-
-
Hiriart-Urruty, J.-B.1
-
23
-
-
0034361329
-
Metric regularity and subdifferential calculus
-
A. D. Ioffe, "Metric regularity and subdifferential calculus," Russian Math. Surv., vol. 55, no. 3, p. 501, 2000.
-
(2000)
Russian Math. Surv.
, vol.55
, Issue.3
, pp. 501
-
-
Ioffe, A.D.1
-
24
-
-
77956038243
-
Heuristic parameter-choice rules for convex variational regularization based on error estimates
-
B. Jin and D. A. Lorenz, "Heuristic parameter-choice rules for convex variational regularization based on error estimates," SIAM J. Numer. Anal., vol. 48, no. 3, pp. 1208-1229, 2010.
-
(2010)
SIAM J. Numer. Anal.
, vol.48
, Issue.3
, pp. 1208-1229
-
-
Jin, B.1
Lorenz, D.A.2
-
25
-
-
33744936851
-
About regularity of collections of sets
-
A. Y. Kruger, "About regularity of collections of sets," Set-Valued Anal., vol. 14, pp. 187-206, 2006.
-
(2006)
Set-Valued Anal.
, vol.14
, pp. 187-206
-
-
Kruger, A.Y.1
-
26
-
-
84898600635
-
Matrix recipes for hard thresholding methods
-
A. Kyrillidis and V. Cevher, "Matrix recipes for hard thresholding methods," J. Math. Imag. Vision, vol. 28, no. 2, pp. 235-265, 2014.
-
(2014)
J. Math. Imag. Vision
, vol.28
, Issue.2
, pp. 235-265
-
-
Kyrillidis, A.1
Cevher, V.2
-
27
-
-
79957452717
-
q minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems
-
q minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems," SIAM J. Optimiz., vol. 21, no. 1, pp. 82-101, 2011.
-
(2011)
SIAM J. Optimiz.
, vol.21
, Issue.1
, pp. 82-101
-
-
Lai, M.-J.1
Wang, J.2
-
28
-
-
85093406419
-
Generalized subdifferentials of the rank function
-
H. Le, "Generalized subdifferentials of the rank function," Optimiz. Lett., vol. 7, pp. 1-13, 2012.
-
(2012)
Optimiz. Lett.
, vol.7
, pp. 1-13
-
-
Le, H.1
-
29
-
-
70349387487
-
Local linear convergence for alternating and averaged nonconvex projections
-
A. S. Lewis, D. R. Luke, and J. Malick, "Local linear convergence for alternating and averaged nonconvex projections," Found. Computat. Math., vol. 9, no. 4, pp. 485-513, 2009.
-
(2009)
Found. Computat. Math.
, vol.9
, Issue.4
, pp. 485-513
-
-
Lewis, A.S.1
Luke, D.R.2
Malick, J.3
-
30
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
P. L. Lions and B. Mercier, "Splitting algorithms for the sum of two nonlinear operators," SIAM J. Numer. Anal., vol. 16, no. 6, pp. 964-979, 1979.
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, Issue.6
, pp. 964-979
-
-
Lions, P.L.1
Mercier, B.2
-
31
-
-
84883255319
-
Prox-regularity of rank constraint sets and implications for algorithms
-
D. Luke, "Prox-regularity of rank constraint sets and implications for algorithms," J. Math. Imag. Vision, vol. 47, no. 3, pp. 231-238, 2013.
-
(2013)
J. Math. Imag. Vision
, vol.47
, Issue.3
, pp. 231-238
-
-
Luke, D.1
-
32
-
-
50049097331
-
Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space
-
D. R. Luke, "Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space," SIAM J. Optimiz., vol. 19, no. 2, pp. 714-739, 2008.
-
(2008)
SIAM J. Optimiz.
, vol.19
, Issue.2
, pp. 714-739
-
-
Luke, D.R.1
-
33
-
-
34249303170
-
Variational analysis and generalized differentiation, I: Basic theory; II: Applications
-
New York, NY, USA: Springer-Verlag
-
B. Mordukhovich, "Variational analysis and generalized differentiation, I: Basic theory; II: Applications," in Grundlehren Der Mathematischen Wissenschaften. New York, NY, USA: Springer-Verlag, 2006.
-
(2006)
Grundlehren der Mathematischen Wissenschaften
-
-
Mordukhovich, B.1
-
34
-
-
0042283592
-
Metric inequality, subdifferential calculus and applications
-
H. V. Ngai and M. Théra, "Metric inequality, subdifferential calculus and applications," Set-Valued Anal., vol. 9, pp. 187-216, 2001.
-
(2001)
Set-Valued Anal.
, vol.9
, pp. 187-216
-
-
Ngai, H.V.1
Théra, M.2
-
36
-
-
84987937647
-
Eclatement de contraintes en paralléle pour la minimisation d'une forme quadratique
-
G. Pierra, "Eclatement de contraintes en paralléle pour la minimisation d'une forme quadratique," Lecture Notes in Comput. Sci., vol. 41, pp. 200-218, 1976.
-
(1976)
Lecture Notes in Comput. Sci.
, vol.41
, pp. 200-218
-
-
Pierra, G.1
-
37
-
-
0021201713
-
Decomposition through formalization in a product space
-
G. Pierra, "Decomposition through formalization in a product space," Math. Program., vol. 28, pp. 96-115, 1984.
-
(1984)
Math. Program.
, vol.28
, pp. 96-115
-
-
Pierra, G.1
-
39
-
-
84893320476
-
The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing
-
Feb.
-
A. Tillmann and M. E. Pfetsch, "The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing," IEEE Trans. Inf. Theory, vol. 60, no. 2, p. 12481259, Feb. 2014.
-
(2014)
IEEE Trans. Inf. Theory
, vol.60
, Issue.2
, pp. 12481259
-
-
Tillmann, A.1
Pfetsch, M.E.2
|