-
2
-
-
60849092633
-
Convergence of the proximal point method for metrically regular mappings
-
F. A. Artacho, A. Dontchev, and M. Geoffroy, Convergence of the proximal point method for metrically regular mappings, ESAIM Proc., 17 (2007), pp. 1-8.
-
(2007)
ESAIM Proc.
, vol.17
, pp. 1-8
-
-
Artacho, F.A.1
Dontchev, A.2
Geoffroy, M.3
-
3
-
-
34347336607
-
Uniformity and inexact version of a proximal method for metrically regular mappings
-
F. A. Artacho and M. Geoffroy, Uniformity and inexact version of a proximal method for metrically regular mappings, J. Math. Anal. Appl., 335 (2007), pp. 168-183.
-
(2007)
J. Math. Anal. Appl.
, vol.335
, pp. 168-183
-
-
Artacho, F.A.1
Geoffroy, M.2
-
4
-
-
77953092582
-
Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality
-
H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438-457.
-
(2010)
Math. Oper. Res.
, vol.35
, pp. 438-457
-
-
Attouch, H.1
Bolte, J.2
Redont, P.3
Soubeyran, A.4
-
5
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), pp. 367-426.
-
(1996)
SIAM Rev.
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
7
-
-
2942687455
-
Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
-
H. H. Bauschke, P. L. Combettes, and D. R. Luke, Finding best approximation pairs relative to two closed convex sets in Hilbert spaces, J. Approx. Theory, 127 (2004), pp. 178-314.
-
(2004)
J. Approx. Theory
, vol.127
, pp. 178-314
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
8
-
-
84881222107
-
Restricted normal cones and the method of alternating projections: Applications
-
H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang, Restricted normal cones and the method of alternating projections: Applications, Set-Valued Variational Anal., 21(2013), pp. 475-501.
-
(2013)
Set-Valued Variational Anal.
, vol.21
, pp. 475-501
-
-
Bauschke, H.H.1
Luke, D.R.2
Phan, H.M.3
Wang, X.4
-
9
-
-
84881222107
-
Restricted normal cones and the method of alternating projections: Theory
-
H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang, Restricted normal cones and the method of alternating projections: Theory, Set-Valued Variational Anal., 21(2013), pp. 431-473.
-
(2013)
Set-Valued Variational Anal.
, vol.21
, pp. 431-473
-
-
Bauschke, H.H.1
Luke, D.R.2
Phan, H.M.3
Wang, X.4
-
10
-
-
84976477811
-
The douglas-rachford algorithm in the absence of convexity
-
Springer, New York
-
J. M. Borwein and B. Sims, The Douglas-Rachford algorithm in the absence of convexity, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Optim. Appl., 49 Springer, New York, 2011, pp. 93-109.
-
(2011)
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Optim. Appl.
, vol.49
, pp. 93-109
-
-
Borwein, J.M.1
Sims, B.2
-
11
-
-
63349096840
-
Set-valued mappings and enlargements of monotone operators
-
Springer, New York
-
R. S. Burachik and A. N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Optim. Appl. 8, Springer, New York, 2008.
-
(2008)
Optim. Appl.
, vol.8
-
-
Burachik, R.S.1
Iusem, A.N.2
-
12
-
-
16244375249
-
Proximal methods for cohypomonotone operators
-
P. L. Combettes and T. Pennanen, Proximal methods for cohypomonotone operators, SIAM J. Control Optim., 43 (2004), pp. 731-742.
-
(2004)
SIAM J. Control Optim.
, vol.43
, pp. 731-742
-
-
Combettes, P.L.1
Pennanen, T.2
-
14
-
-
0002441985
-
The angle between subspaces of a hilbert space
-
S. Singh, ed., NATO Sci. Ser., Springer
-
F. Deutsch, The Angle Between Subspaces of a Hilbert Space, in Approximation Theory, Wavelets and Applications, S. Singh, ed., NATO Sci. Ser. 454, Springer, 1995, pp. 107-130.
-
(1995)
Approximation Theory, Wavelets and Applications
, vol.454
, pp. 107-130
-
-
Deutsch, F.1
-
16
-
-
56249100034
-
The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets
-
F. Deutsch and H. Hundal, The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets, J. Approx. Theory, 155 (2008), pp. 155-184.
-
(2008)
J. Approx. Theory
, vol.155
, pp. 155-184
-
-
Deutsch, F.1
Hundal, H.2
-
17
-
-
56249100034
-
The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets
-
F. Deutsch and H. Hundal, The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets, J. Approx. Theory, 155 (2008), pp. 155-184.
-
(2008)
J. Approx. Theory
, vol.155
, pp. 155-184
-
-
Deutsch, F.1
Hundal, H.2
-
18
-
-
84968486297
-
On certain inequalities and characteristic value problems for analytic functions and for functions of two variables
-
K. Friedrichs, On certain inequalities and characteristic value problems for analytic functions and for functions of two variables, Trans. Amer. Math. Soc., 41 (1937), pp. 321-364.
-
(1937)
Trans. Amer. Math. Soc.
, vol.41
, pp. 321-364
-
-
Friedrichs, K.1
-
20
-
-
0003199612
-
Uniform convexity, hyperbolic geometry, and nonexpansive mappings
-
CRC Press, Boca Raton, FL
-
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Pure Appl. Math., 83, CRC Press, Boca Raton, FL, 1984.
-
(1984)
Pure Appl. Math.
, vol.83
-
-
Goebel, K.1
Reich, S.2
-
21
-
-
33845708830
-
The method of projections for finding the common point of convex sets
-
L. G. Gubin, B. T. Polyak, and E. Raik, The method of projections for finding the common point of convex sets, Comput. Math. Math. Phys., 7 (1967), pp. 1-24.
-
(1967)
Comput. Math. Math. Phys.
, vol.7
, pp. 1-24
-
-
Gubin, L.G.1
Polyak, B.T.2
Raik, E.3
-
22
-
-
0034361329
-
Metric regularity and subdifferential calculus
-
A. D. Ioffe, Metric regularity and subdifferential calculus, Russian Math. Surveys, 55 (2000), pp. 501-558.
-
(2000)
Russian Math. Surveys
, vol.55
, pp. 501-558
-
-
Ioffe, A.D.1
-
23
-
-
0242679720
-
Inexact versions of the proximal point algorithm without monotonicity
-
A. Iusem, T. Pennanen, and B. Svaiter, Inexact versions of the proximal point algorithm without monotonicity, SIAM J. Optim., 13 (2003), pp. 1080-1097.
-
(2003)
SIAM J. Optim.
, vol.13
, pp. 1080-1097
-
-
Iusem, A.1
Pennanen, T.2
Svaiter, B.3
-
24
-
-
46749133114
-
Optimization methods and stability of inclusions in Banach spaces
-
D. Klatte and B. Kummer, Optimization methods and stability of inclusions in Banach spaces, Math. Program. B, 117 (2009), pp. 305-350.
-
(2009)
Math. Program. B
, vol.117
, pp. 305-350
-
-
Klatte, D.1
Kummer, B.2
-
25
-
-
2542576238
-
Weak stationarity: Eliminating the gap between necessary and sufficient conditions
-
A. Y. Kruger., Weak stationarity: Eliminating the gap between necessary and sufficient conditions, Optimization, 53 (2004), pp. 147-164.
-
(2004)
Optimization
, vol.53
, pp. 147-164
-
-
Kruger, A.Y.1
-
26
-
-
33744936851
-
About regularity of collections of sets
-
A. Y. Kruger, About regularity of collections of sets, Set-Valued Anal., 14 (2006), pp. 187-206.
-
(2006)
Set-Valued Anal.
, vol.14
, pp. 187-206
-
-
Kruger, A.Y.1
-
27
-
-
70349387487
-
Local linear convergence for alternating and averaged nonconvex projections
-
A. S. Lewis, D. R. Luke, and J. Malick, Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math., 9 (2009), pp. 485-513.
-
(2009)
Found. Comput. Math.
, vol.9
, pp. 485-513
-
-
Lewis, A.S.1
Luke, D.R.2
Malick, J.3
-
28
-
-
0000345334
-
Splitting algorithms for the sum of two nonlinear operators
-
P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), pp. 964-979.
-
(1979)
SIAM J. Numer. Anal.
, vol.16
, pp. 964-979
-
-
Lions, P.L.1
Mercier, B.2
-
29
-
-
50049097331
-
Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space
-
D. R. Luke, Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space, SIAM J. Optim., 19 (2008), pp. 714-739.
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 714-739
-
-
Luke, D.R.1
-
30
-
-
34249303170
-
Variational analysis and generalized differentiation, I: Basic theory
-
Springer, New York
-
B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Math. Wiss., Springer, New York, 2006.
-
(2006)
Grundlehren Math. Wiss.
-
-
Mordukhovich, B.1
-
31
-
-
0042283592
-
Metric inequality, subdifferential calculus and applications
-
H. V. Ngai and M. Théra, Metric inequality, subdifferential calculus and applications, Set-Valued Anal., 9 (2001), pp. 187-216.
-
(2001)
Set-Valued Anal.
, vol.9
, pp. 187-216
-
-
Ngai, H.V.1
Théra, M.2
-
32
-
-
0036473820
-
Local convergence of the proximal point algorithm and multiplier methods without monotonicity
-
T. Pennanen, Local convergence of the proximal point algorithm and multiplier methods without monotonicity, Math. Oper. Res., 27 (2002), pp. 170-191.
-
(2002)
Math. Oper. Res.
, vol.27
, pp. 170-191
-
-
Pennanen, T.1
-
33
-
-
23044523810
-
Local differentiability of distance functions
-
R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), pp. 5231-5249.
-
(2000)
Trans. Amer. Math. Soc.
, vol.352
, pp. 5231-5249
-
-
Poliquin, R.A.1
Rockafellar, R.T.2
Thibault, L.3
-
35
-
-
0002130882
-
Projections on convex sets in Hilbert space and spectral theory
-
E. H. Zarantonello, ed., Academic Press, New York
-
E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, in Contributions to Nonlinear Functional Analysis, E. H. Zarantonello, ed., Academic Press, New York, 1971, pp. 237-424.
-
(1971)
Contributions to Nonlinear Functional Analysis
, pp. 237-424
-
-
Zarantonello, E.H.1
|