메뉴 건너뛰기




Volumn 23, Issue 4, 2013, Pages 2448-2478

Sparse approximation via penalty decomposition methods

Author keywords

Block coordinate descent method; Compressed sensing; L0 minimization; Penalty decomposition methods; Sparse inverse covariance selection; Sparse logistic regression

Indexed keywords

BLOCK COORDINATE DESCENTS; COMPUTATIONAL RESULTS; DECOMPOSITION METHODS; FIRST-ORDER OPTIMALITY CONDITION; INVERSE COVARIANCE; LOGISTIC REGRESSIONS; MINIMIZATION PROBLEMS; SPARSE APPROXIMATIONS;

EID: 84892875448     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/100808071     Document Type: Article
Times cited : (177)

References (59)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation
    • O. Banerjee, L. E. Ghaoui, and A. D'Aspremont, Model selection through sparse maximum likelihood estimation, J. Mach. Learn. Res., 9 (2008), pp. 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    D'Aspremont, A.3
  • 4
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim., 10 (2000), pp. 1196-1211.
    • (2000) SIAM J. Optim. , vol.10 , pp. 1196-1211
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 5
    • 57349145416 scopus 로고    scopus 로고
    • Iterative thresholding for sparse approximations
    • T. Blumensath and M. E. Davies, Iterative thresholding for sparse approximations, J. Fourier Anal. Appl., 14 (2008), pp. 629-654.
    • (2008) J. Fourier Anal. Appl. , vol.14 , pp. 629-654
    • Blumensath, T.1    Davies, M.E.2
  • 6
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal., 27 (2009), pp. 265-274.
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 7
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E. J. Candés and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), pp. 717-772.
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candés, E.J.1    Recht, B.2
  • 8
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. J. Candés, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candés, E.J.1    Romberg, J.2    Tao, T.3
  • 9
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Process. Lett., 14 (2007), pp. 707-710.
    • (2007) IEEE Signal Process. Lett. , vol.14 , pp. 707-710
    • Chartrand, R.1
  • 12
    • 84873932029 scopus 로고    scopus 로고
    • Tech. report, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
    • p Minimization, Tech. report, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, 2010.
    • (2010) p Minimization
    • Chen, X.1    Zhou, W.2
  • 13
    • 0000364765 scopus 로고
    • Robust modelling of erratic data
    • J. Claerbout and F. Muir, Robust modelling of erratic data, Geophys., 38 (1973), pp. 826-844.
    • (1973) Geophys. , vol.38 , pp. 826-844
    • Claerbout, J.1    Muir, F.2
  • 15
    • 47249127654 scopus 로고    scopus 로고
    • Covariance selection for nonchordal graphs via chordal embedding
    • J. Dahl, L. Vandenberghe, and V. Roychowdhury, Covariance selection for nonchordal graphs via chordal embedding, Optim. Methods Softw., 23 (2008), pp. 501-520.
    • (2008) Optim. Methods Softw. , vol.23 , pp. 501-520
    • Dahl, J.1    Vandenberghe, L.2    Roychowdhury, V.3
  • 16
    • 0001038826 scopus 로고
    • Covariance selection
    • A. Dempster, Covariance selection, Biometrics, 28 (1978), pp. 157-175.
    • (1978) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.1
  • 17
    • 78650568518 scopus 로고    scopus 로고
    • Dependency networks for genome-wide data
    • A. Dobra, Dependency networks for genome-wide data, Biostatist., 8 (2007), pp. 1-28.
    • (2007) Biostatist. , vol.8 , pp. 1-28
    • Dobra, A.1
  • 20
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Select. Topics Signal Process., 1 (2007), pp. 586-598.
    • (2007) IEEE J. Select. Topics Signal Process. , vol.1 , pp. 586-598
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 21
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatist., 9 (2008), pp. 432-441.
    • (2008) Biostatist. , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 26644448212 scopus 로고    scopus 로고
    • Cortical origins of response time variability during rapid discrimination of visual objects
    • A. D. Gerson, L. C. Parra, and P. Sajda, Cortical origins of response time variability during rapid discrimination of visual objects, Neuroimage, 28 (2005), pp. 342-353.
    • (2005) Neuroimage , vol.28 , pp. 342-353
    • Gerson, A.D.1    Parra, L.C.2    Sajda, P.3
  • 23
    • 34547692104 scopus 로고    scopus 로고
    • Matrix computations
    • 3rd ed., Johns Hopkins University Press, Baltimore, MD
    • G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Stud. Appl. Math. 13, Johns Hopkins University Press, Baltimore, MD, 1996.
    • (1996) Stud. Appl. Math. , vol.13
    • Golub, G.1    Van Loan, C.2
  • 25
    • 77950363235 scopus 로고    scopus 로고
    • Fixed-point continuation applied to compressed sensing: Implementation and numerical experiments
    • E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation applied to compressed sensing: Implementation and numerical experiments, J. Comput. Math., 28 (2010), pp. 170-194.
    • (2010) J. Comput. Math. , vol.28 , pp. 170-194
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 32
    • 0019390023 scopus 로고
    • Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution
    • S. Levy and P. Fullagar, Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution, Geophys., 46 (1981), pp. 1235-1243.
    • (1981) Geophys. , vol.46 , pp. 1235-1243
    • Levy, S.1    Fullagar, P.2
  • 33
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classification using microarray data: Model selection in a large p and small n case
    • J. G. Liao and K. V. Chin, Logistic regression for disease classification using microarray data: Model selection in a large p and small n case, Bioinformatics, 23 (15), 2007, pp. 1945-1951.
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 1945-1951
    • Liao, J.G.1    Chin, K.V.2
  • 35
    • 84860633052 scopus 로고    scopus 로고
    • 1-regularized sparse covariance selection
    • 1-regularized sparse covariance selection, Math. Program. Comput., 2 (2010), pp. 291-315.
    • (2010) Math. Program. Comput. , vol.2 , pp. 291-315
    • Li, L.1    Toh, K.C.2
  • 36
    • 70450200096 scopus 로고    scopus 로고
    • Smooth optimization approach for sparse covariance selection
    • Z. Lu, Smooth optimization approach for sparse covariance selection, SIAM J. Optim., 19 (2009), pp. 1807-1827.
    • (2009) SIAM J. Optim. , vol.19 , pp. 1807-1827
    • Lu, Z.1
  • 37
    • 77956030532 scopus 로고    scopus 로고
    • Adaptive first-order methods for general sparse inverse covariance selection
    • Z. Lu, Adaptive first-order methods for general sparse inverse covariance selection, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2000-2016.
    • (2010) SIAM J. Matrix Anal. Appl. , vol.31 , pp. 2000-2016
    • Lu, Z.1
  • 38
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Image Process., 41 (1993), pp. 3397-3415.
    • (1993) IEEE Trans. Image Process. , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 43
  • 44
    • 33644928473 scopus 로고    scopus 로고
    • Temporal characterization of the neural correlates of perceptual decision making in the human brain
    • M. G. Philiastides and P. Sajda, Temporal characterization of the neural correlates of perceptual decision making in the human brain, Cereb. Cortex, 16 (2006), pp. 509-518.
    • (2006) Cereb. Cortex , vol.16 , pp. 509-518
    • Philiastides, M.G.1    Sajda, P.2
  • 46
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501.
    • (2010) SIAM Rev. , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 48
    • 0008988926 scopus 로고
    • Linear inversion of band-limited reflection seismograms
    • F. Santosa and W. W. Symes, Linear inversion of band-limited reflection seismograms, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1307-1330.
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , pp. 1307-1330
    • Santosa, F.1    Symes, W.W.2
  • 51
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 52
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform. Theory, 50 (2004), pp. 2231-2242.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2231-2242
    • Tropp, J.A.1
  • 53
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals
    • J. Tropp, Just relax: Convex programming methods for identifying sparse signals, IEEE Trans. Inform. Theory, 51 (2006), pp. 1030-1051.
    • (2006) IEEE Trans. Inform. Theory , vol.51 , pp. 1030-1051
    • Tropp, J.1
  • 54
    • 35748966977 scopus 로고    scopus 로고
    • Learning string similarity measures for gene/protein name dictionary look-up using logistic regression
    • Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou, Learning string similarity measures for gene/protein name dictionary look-up using logistic regression, Bioinformatics, 23 (2007), pp. 2768-2774.
    • (2007) Bioinformatics , vol.23 , pp. 2768-2774
    • Tsuruoka, Y.1    McNaught, J.2    Tsujii, J.3    Ananiadou, S.4
  • 55
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • E. Van Den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput., 31 (2008), pp. 890-912.
    • (2008) SIAM J. Sci. Comput. , vol.31 , pp. 890-912
    • Van Den-Berg, E.1    Friedlander, M.P.2
  • 57
    • 79251515796 scopus 로고    scopus 로고
    • Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm
    • C. Wang, D. Sun and K.-C. Toh, Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm, SIAM J. Optim., 20 (2010), pp. 2994-3013.
    • (2010) SIAM J. Optim. , vol.20 , pp. 2994-3013
    • Wang, C.1    Sun, D.2    Toh, K.-C.3
  • 58
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data
    • K. Y. Yeung, R. E. Bumgarner, and A. E. Raftery, Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data, Bioinformatics, 21 (2005), pp. 2394-2402.
    • (2005) Bioinformatics , vol.21 , pp. 2394-2402
    • Yeung, K.Y.1    Bumgarner, R.E.2    Raftery, A.E.3
  • 59
    • 84873263797 scopus 로고    scopus 로고
    • 0 minimization for wavelet frame based image restoration
    • 0 minimization for wavelet frame based image restoration, Math. Comp., 82 (2013), pp. 995-1015.
    • (2013) Math. Comp. , vol.82 , pp. 995-1015
    • Zhang, Y.1    Dong, B.2    Lu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.