-
1
-
-
0012372202
-
An iterative method for solving a class of nonlinear operator equations in Banach spaces
-
Y. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J., 4 (1994), pp. 39-54.
-
(1994)
Panamer. Math. J.
, vol.4
, pp. 39-54
-
-
Alber, Y.1
Reich, S.2
-
2
-
-
77953092582
-
Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality
-
H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438-457.
-
(2010)
Math. Oper. Res.
, vol.35
, pp. 438-457
-
-
Attouch, H.1
Bolte, J.2
Redont, P.3
Soubeyran, A.4
-
3
-
-
84877887498
-
Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
-
H. Attouch, J. Bolte, and B. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program. Ser. A, 137 (2013), pp. 91-129.
-
(2013)
Math. Program. Ser. A
, vol.137
, pp. 91-129
-
-
Attouch, H.1
Bolte, J.2
Svaiter, B.3
-
4
-
-
0141804105
-
Asymptotic cones and functions in optimization and variational inequalities
-
Springer-Verlag, New York
-
A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and variational inequalities, Springer Monogr. Math., Springer-Verlag, New York, 2003.
-
(2003)
Springer Monogr. Math.
-
-
Auslender, A.1
Teboulle, M.2
-
5
-
-
0042827638
-
Existence of optimal solutions and duality results under weak conditions
-
A. Auslender, Existence of optimal solutions and duality results under weak conditions, Math. Program., 88 (2000), pp 45-59.
-
(2000)
Math. Program.
, vol.88
, pp. 45-59
-
-
Auslender, A.1
-
6
-
-
80955144168
-
There is no variational characterization of the cycles in the method of periodic projections
-
J.-B. Baillon, P. L. Combettes, and R. Cominetti, There is no variational characterization of the cycles in the method of periodic projections, J. Funct. Anal., 262 (2012), pp. 400-408.
-
(2012)
J. Funct. Anal.
, vol.262
, pp. 400-408
-
-
Baillon, J.-B.1
Combettes, P.L.2
Cominetti, R.3
-
8
-
-
0001448913
-
On the convergence of von Neumann's alternating projection algorithm for two sets
-
H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann's alternating projection algorithm for two sets, Set-Valued Anal., 1 (1993), pp. 185-212.
-
(1993)
Set-Valued Anal.
, vol.1
, pp. 185-212
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
9
-
-
0037976260
-
Dykstra's alternating projection algorithm for two sets
-
H. H. Bauschke and J. M. Borwein, Dykstra's alternating projection algorithm for two sets, J. Approxim. Theory, 79 (1994), pp. 418-443.
-
(1994)
J. Approxim. Theory
, vol.79
, pp. 418-443
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
10
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), pp. 367-426. (Pubitemid 126599619)
-
(1996)
SIAM Review
, vol.38
, Issue.3
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
11
-
-
0002351732
-
The method of cyclic projections for closed convex sets in Hilbert space
-
H. H. Bauschke, J. M. Borwein, and A. S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, in Recent Developments in Optimization Theory and Nonlinear Analysis, Contemporary Mathematic 204, 1997, pp. 1-38.
-
(1997)
Recent Developments in Optimization Theory and Nonlinear Analysis, Contemporary Mathematic
, vol.204
, pp. 1-38
-
-
Bauschke, H.H.1
Borwein, J.M.2
Lewis, A.S.3
-
13
-
-
84897563543
-
Restricted normal cones and the method of alternating projections
-
press
-
H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang, Restricted normal cones and the method of alternating projections, in Set-Valued and Variational Analysis, in press, http://arxiv.org/abs/1205.0318v1.
-
Set-Valued and Variational Analysis
-
-
Bauschke, H.H.1
Luke, D.R.2
Phan, H.M.3
Wang, X.4
-
15
-
-
26444496660
-
On types of Hausdorff discontinuity from above for convex closed mappings
-
E. G. Belousov, On types of H ausdorff discontinuity from above for convex closed mappings, Optimization, 49 (2001), pp. 303-325. (Pubitemid 33817578)
-
(2001)
Optimization
, vol.49
, Issue.4
, pp. 303-325
-
-
Belousov, E.G.1
-
16
-
-
0036539291
-
A Frank-Wolfe type theorem for convex polynomial programs
-
DOI 10.1023/A:1014813701864
-
E. G. Belousov and D. Klatte, A Frank-Wolfe type theorem for convex polynomial programs, Comput. Optim. Appl., 22 (2002), pp. 37-48. (Pubitemid 34474874)
-
(2002)
Computational Optimization and Applications
, vol.22
, Issue.1
, pp. 37-48
-
-
Belousov, E.G.1
Klatte, D.2
-
19
-
-
0001263852
-
Finding the common point of convex sets by the method of successive projection
-
L. M. Br̀egman, Finding the common point of convex sets by the method of successive projection, Dokl. Akad. Nauk SSSR, 162 (1965), pp. 487-490.
-
(1965)
Dokl. Akad. Nauk SSSR
, vol.162
, pp. 487-490
-
-
Br̀egman, L.M.1
-
20
-
-
0000256894
-
Nonexpansive projections and resolvents of accretive operators in Banach spaces
-
R. E Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., 3 (1977), pp. 459-470.
-
(1977)
Houston J. Math.
, vol.3
, pp. 459-470
-
-
Bruck, R.E.1
Reich, S.2
-
21
-
-
8644260616
-
Best approximation in inner product spaces
-
Springer-Verlag, New York
-
F. Deutsch, Best Approximation in Inner Product Spaces, CMS Books Math./Ouvrage Math. SMC 7, Springer-Verlag, New York, 2001.
-
(2001)
CMS Books Math./Ouvrage Math. SMC
, vol.7
-
-
Deutsch, F.1
-
22
-
-
0040114954
-
The Lojasiewicz exponent of an analytic function at an isolated zero
-
J. Gwózdziewicz, The Lojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv., 74 (1999), pp. 364-375.
-
(1999)
Comment. Math. Helv.
, vol.74
, pp. 364-375
-
-
Gwózdziewicz, J.1
-
23
-
-
33845708830
-
The method of projections for finding the common point of convex sets
-
L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding the common point of convex sets, Comput. Math. Math. Phys., 7 (1967), pp. 1-24.
-
(1967)
Comput. Math. Math. Phys.
, vol.7
, pp. 1-24
-
-
Gubin, L.G.1
Polyak, B.T.2
Raik, E.V.3
-
24
-
-
68449087853
-
Semidefinite representation of convex sets
-
J. W. Helton and J. W. Nie, Semidefinite representation of convex sets, Math. Program. Ser. A, 122 (2110), pp. 21-64.
-
Math. Program. Ser. A
, vol.122
, pp. 21-64
-
-
Helton, J.W.1
Nie, J.W.2
-
25
-
-
0005334196
-
Hoffman's error bound for systems of convex inequalities
-
Dekker, New York
-
D. Klatte, Hoffman's error bound for systems of convex inequalities, in Mathematical Programming with Data Perturbations, Lect. Notes Pure Appl. Math., Dekker, New York, 1998, pp.185-199.
-
(1998)
Mathematical Programming with Data Perturbations, Lect. Notes Pure Appl. Math.
, pp. 185-199
-
-
Klatte, D.1
-
26
-
-
34748888174
-
An effective Lojasiewicz inequality for real polynomials
-
J. Kollár, An effective Lojasiewicz inequality for real polynomials, Period. Math. Hungar., 38 (1999), pp. 213-221.
-
(1999)
Period. Math. Hungar.
, vol.38
, pp. 213-221
-
-
Kollár, J.1
-
27
-
-
33646672554
-
A note on the von Neumann alternating projections algorithm
-
E. Kopecká and S. Reich, A note on the von Neumann alternating projections algorithm, J. Nonlinear Convex Anal., 5 (2004), pp. 379-386.
-
(2004)
J. Nonlinear Convex Anal.
, vol.5
, pp. 379-386
-
-
Kopecká, E.1
Reich, S.2
-
28
-
-
0002449351
-
Error bounds for convex inequality systems
-
J. P. Crouzeix, J. E. Martinez-Legaz, and M. Volle. eds., Kluwer Academic Publishers, Dordrecht, The Netherlands
-
A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems, Generalized Convexity, Generalized Monotonicity, J. P. Crouzeix, J. E. Martinez-Legaz, and M. Volle. eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 75-110.
-
(1998)
Generalized Convexity, Generalized Monotonicity
, pp. 75-110
-
-
Lewis, A.S.1
Pang, J.S.2
-
29
-
-
77951271873
-
On the asymptotic well behaved functions and global error bound for convex polynomials
-
G. Li, On the asymptotic well behaved functions and global error bound for convex polynomials, SIAM J. Optim., 20 (2010), pp. 1923-1943.
-
(2010)
SIAM J. Optim.
, vol.20
, pp. 1923-1943
-
-
Li, G.1
-
30
-
-
70450212518
-
Error bounds of generalized D-gap functions for nonsmooth and non-monotone variational inequality problems
-
G. Li and K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and non-monotone variational inequality problems, SIAM J. Optim., 20 (2009), pp. 667-690.
-
(2009)
SIAM J. Optim.
, vol.20
, pp. 667-690
-
-
Li, G.1
Ng, K.F.2
-
31
-
-
84871580084
-
Holder metric subregularity with applications to proximal point method
-
G. Li and B. S. Mordukhovich, Holder metric subregularity with applications to proximal point method, SIAM J. Optim., 22 (2012), pp. 1655-1684.
-
(2012)
SIAM J. Optim.
, vol.22
, pp. 1655-1684
-
-
Li, G.1
Mordukhovich, B.S.2
-
32
-
-
0029377865
-
Error bounds for piecewise convex quadratic programs and applications
-
W. Li, Error bounds for piecewise convex quadratic programs and applications, SIAM J. Control Optim., 33 (1995), pp. 1510-1529.
-
(1995)
SIAM J. Control Optim.
, vol.33
, pp. 1510-1529
-
-
Li, W.1
-
33
-
-
0001145260
-
Extension of Hoffman's error bound to polynomial systems
-
X. D. Luo and Z. Q. Luo, Extension of Hoffman's error bound to polynomial systems, SIAM J. Optim., 4 (1994), pp. 383-392.
-
(1994)
SIAM J. Optim.
, vol.4
, pp. 383-392
-
-
Luo, X.D.1
Luo, Z.Q.2
-
34
-
-
0003999118
-
-
Cambridge University Press, Cambridge
-
Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996.
-
(1996)
Mathematical Programs with Equilibrium Constraints
-
-
Luo, Z.Q.1
Pang, J.S.2
Ralph, D.3
-
35
-
-
33645139512
-
On generalizations of the Frank-Wolfe theorem to convex and quasi-convex programmes
-
W. T. Obuchowska, On generalizations of the Frank-Wolfe theorem to convex and quasi-convex programmes, Comput. Optim. Appl., 33 (2006), pp. 349-364.
-
(2006)
Comput. Optim. Appl.
, vol.33
, pp. 349-364
-
-
Obuchowska, W.T.1
-
36
-
-
0000150038
-
Error bounds in mathematical programming
-
J. S. Pang, Error bounds in mathematical programming, Math. Program., 79 (1997), pp. 299-332.
-
(1997)
Math. Program.
, vol.79
, pp. 299-332
-
-
Pang, J.S.1
-
37
-
-
0003466110
-
-
2nd ed., Springer-Verlag, New York
-
R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd ed., Springer-Verlag, New York, 1993.
-
(1993)
Convex Functions, Monotone Operators and Differentiability
-
-
Phelps, R.R.1
-
38
-
-
0016952838
-
Regularity and stability for convex multivalued functions
-
S. M. Robinson, Regularity and Stability for Convex Multivalued Functions, Math. Oper. Res., 1 (1976), pp. 130-143.
-
(1976)
Math. Oper. Res.
, vol.1
, pp. 130-143
-
-
Robinson, S.M.1
-
40
-
-
77951267770
-
On Hausdorff continuity of convex and convex polynomial mappings
-
E.G. Belousov and B. Bank, eds., Moscow University, Moscow
-
V. M Shironin, On Hausdorff continuity of convex and convex polynomial mappings, in Mathematical Optimization: Questions of Solvability and Stability, E.G. Belousov and B. Bank, eds., Moscow University, Moscow, 1986.
-
(1986)
Mathematical Optimization: Questions of Solvability and Stability
-
-
Shironin, V.M.1
-
41
-
-
0039669502
-
-
Princeton University Press, Princeton, NJ
-
J. von Neumann, Functional Operators, Vol. II, Princeton University Press, Princeton, NJ, 1950.
-
(1950)
Functional Operators
, vol.2
-
-
Von Neumann, J.1
|