메뉴 건너뛰기




Volumn 531, Issue , 2015, Pages 1095-1107

Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins

Author keywords

Artificial neural networks; Rating curve; Sediment; Ungauged basins

Indexed keywords

ENTROPY; FORECASTING; LAND USE; NEURAL NETWORKS; SEDIMENTS; WATER QUALITY; WETLANDS;

EID: 84948103458     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.11.008     Document Type: Article
Times cited : (43)

References (71)
  • 1
    • 0035117652 scopus 로고    scopus 로고
    • Modeling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets
    • Abrahart R.J., White S.M. Modeling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets. Phys. Chem. Earth (B) 2001, 26(1):19-24.
    • (2001) Phys. Chem. Earth (B) , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 2
    • 0000501656 scopus 로고
    • Information theory as an extension of the maximum likelihood principle
    • Akademiai Kiado, Budapest, B.N. Petrov, F. Csaki (Eds.)
    • Akaike H. Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory 1973, 267-281. Akademiai Kiado, Budapest. B.N. Petrov, F. Csaki (Eds.).
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • Alp M.H., Cigizoglu K. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ. Model. Softw. 2007, 22:2-13.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 2-13
    • Alp, M.H.1    Cigizoglu, K.2
  • 4
    • 0034738487 scopus 로고    scopus 로고
    • Fitting and interpretation of sediment rating curves
    • Asselman N.E.M. Fitting and interpretation of sediment rating curves. J. Hydrol. 2000, 234(3):228-248.
    • (2000) J. Hydrol. , vol.234 , Issue.3 , pp. 228-248
    • Asselman, N.E.M.1
  • 5
    • 84942279402 scopus 로고    scopus 로고
    • Entropy-based neural networks model for flow duration curves at ungauged sites
    • Atieh M., Gharabaghi B., Rudra R. Entropy-based neural networks model for flow duration curves at ungauged sites. J. Hydrol. 2015, 529(3):1007-1020.
    • (2015) J. Hydrol. , vol.529 , Issue.3 , pp. 1007-1020
    • Atieh, M.1    Gharabaghi, B.2    Rudra, R.3
  • 6
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modeling
    • Aytek A., Kisi O. A genetic programming approach to suspended sediment modeling. J. Hydrol. 2008, 351(3):288-298.
    • (2008) J. Hydrol. , vol.351 , Issue.3 , pp. 288-298
    • Aytek, A.1    Kisi, O.2
  • 7
    • 84859109435 scopus 로고    scopus 로고
    • Comparing methods for estimating flow duration curves at ungauged sites
    • Booker D., Snelder T. Comparing methods for estimating flow duration curves at ungauged sites. J. Hydrol. 2012, 434:78-94.
    • (2012) J. Hydrol. , vol.434 , pp. 78-94
    • Booker, D.1    Snelder, T.2
  • 8
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-Background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1-Background and methodology. J. Hydrol. 2005, 301(1):75-92.
    • (2005) J. Hydrol. , vol.301 , Issue.1 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 9
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv. Water Resour. 2004, 27:185-195.
    • (2004) Adv. Water Resour. , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 10
    • 23044443211 scopus 로고    scopus 로고
    • Application of the generalized regression neural networks in intermittent flow forecasting and estimation
    • Cigizoglu H.K. Application of the generalized regression neural networks in intermittent flow forecasting and estimation. J. Hydrol. Eng. 2006, 10(4):336-341.
    • (2006) J. Hydrol. Eng. , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 11
    • 60549084178 scopus 로고    scopus 로고
    • Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydrometeorological data
    • Cobaner M., Unal B., Kisi O. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydrometeorological data. J. Hydrol. 2009, 367(1):52-61.
    • (2009) J. Hydrol. , vol.367 , Issue.1 , pp. 52-61
    • Cobaner, M.1    Unal, B.2    Kisi, O.3
  • 12
    • 33947105981 scopus 로고    scopus 로고
    • The accuracy of sediment loads when log-transformation produces nonlinear sediment load-discharge relationships
    • Crowder D.W., Demissie M., Markus M. The accuracy of sediment loads when log-transformation produces nonlinear sediment load-discharge relationships. J. Hydrol. 2007, 336(3):250-268.
    • (2007) J. Hydrol. , vol.336 , Issue.3 , pp. 250-268
    • Crowder, D.W.1    Demissie, M.2    Markus, M.3
  • 13
    • 84888829250 scopus 로고    scopus 로고
    • Prediction of suspended sediment in river using fuzzy logic and multi-linear regression approaches
    • Demirci M., Baltaci A. Prediction of suspended sediment in river using fuzzy logic and multi-linear regression approaches. Neural Comput. Appl. 2013, 23(Suppl. 1):145-151.
    • (2013) Neural Comput. Appl. , vol.23 , pp. 145-151
    • Demirci, M.1    Baltaci, A.2
  • 14
    • 84942250694 scopus 로고    scopus 로고
    • (accessed September 2014).
    • EC, 2012. Environment Canada Climate Normals (1981-2010). (accessed September 2014). http://climate.weather.gc.ca/climate_normals/index_e.html.
    • (2012) Environment Canada Climate Normals (1981-2010)
  • 15
    • 84869506472 scopus 로고    scopus 로고
    • Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications
    • Fan X., Shi C., Zhou Y., Shao W. Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications. Quatern. Int. 2012, 282:152-162.
    • (2012) Quatern. Int. , vol.282 , pp. 152-162
    • Fan, X.1    Shi, C.2    Zhou, Y.3    Shao, W.4
  • 16
    • 84896503896 scopus 로고    scopus 로고
    • Using artificial neural network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia
    • Heng S., Suetsugi T. Using artificial neural network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia. J. Water Res. Prot. 2013, 5:111-123.
    • (2013) J. Water Res. Prot. , vol.5 , pp. 111-123
    • Heng, S.1    Suetsugi, T.2
  • 17
    • 84896533752 scopus 로고    scopus 로고
    • Comparison of regionalization approaches in parameterizing sediment rating curve in ungauged catchments for subsequent instantaneous sediment yield prediction
    • Heng S., Suetsugi T. Comparison of regionalization approaches in parameterizing sediment rating curve in ungauged catchments for subsequent instantaneous sediment yield prediction. J. Hydrol. 2014, 512:240-253.
    • (2014) J. Hydrol. , vol.512 , pp. 240-253
    • Heng, S.1    Suetsugi, T.2
  • 18
    • 84926625422 scopus 로고    scopus 로고
    • Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments
    • Heng S., Suetsugi T. Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments. Hydrol. Res. 2015, 46(1):26-38.
    • (2015) Hydrol. Res. , vol.46 , Issue.1 , pp. 26-38
    • Heng, S.1    Suetsugi, T.2
  • 19
    • 0347031722 scopus 로고    scopus 로고
    • An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations
    • Horowitz A.J. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol. Process. 2003, 17(17):3387-3409.
    • (2003) Hydrol. Process. , vol.17 , Issue.17 , pp. 3387-3409
    • Horowitz, A.J.1
  • 21
    • 78650946824 scopus 로고    scopus 로고
    • Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) basin and their implications
    • Hu B., Wang H., Yang Z., Sun H. Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) basin and their implications. Quatern. Int. 2011, 230:34-43.
    • (2011) Quatern. Int. , vol.230 , pp. 34-43
    • Hu, B.1    Wang, H.2    Yang, Z.3    Sun, H.4
  • 22
    • 84875520036 scopus 로고    scopus 로고
    • Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach
    • Isik S., Kalin L., Schoonover J.E., Srivastava P., Lockab B. Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. J. Hydrol. 2013, 485:103-112.
    • (2013) J. Hydrol. , vol.485 , pp. 103-112
    • Isik, S.1    Kalin, L.2    Schoonover, J.E.3    Srivastava, P.4    Lockab, B.5
  • 23
    • 84877071405 scopus 로고    scopus 로고
    • Regional rating curve models of suspended sediment transport for Turkey
    • Isik S. Regional rating curve models of suspended sediment transport for Turkey. Earth Sci. Inf. 2013, 6(2):87-98.
    • (2013) Earth Sci. Inf. , vol.6 , Issue.2 , pp. 87-98
    • Isik, S.1
  • 24
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain S.H. Development of integrated sediment rating curves using ANNs. J. Hydraul. Eng. 2001, 127:30-37.
    • (2001) J. Hydraul. Eng. , vol.127 , pp. 30-37
    • Jain, S.H.1
  • 25
    • 17644433091 scopus 로고    scopus 로고
    • Daily suspended sediment modelling using a fuzzy differential evolution approach
    • Kisi O. Daily suspended sediment modelling using a fuzzy differential evolution approach. Hydrol. Sci. J. 2004, 49(1):183-197.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.1 , pp. 183-197
    • Kisi, O.1
  • 26
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi O. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 2004, 49(6):1025-1040.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 27
    • 48549096154 scopus 로고    scopus 로고
    • Constructing neural network sediment estimation models using a data-driven algorithm
    • Kisi O. Constructing neural network sediment estimation models using a data-driven algorithm. Math. Comput. Simul. 2008, 79(1):94-103.
    • (2008) Math. Comput. Simul. , vol.79 , Issue.1 , pp. 94-103
    • Kisi, O.1
  • 28
    • 84859640789 scopus 로고    scopus 로고
    • River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques
    • Kisi O., Shiri J. River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Comput. Geosci. 2012, 43:73-82.
    • (2012) Comput. Geosci. , vol.43 , pp. 73-82
    • Kisi, O.1    Shiri, J.2
  • 29
    • 84857685424 scopus 로고    scopus 로고
    • Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
    • Kisi O., Ozkan C., Akay B. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. J. Hydrol. 2012, 428:94-103.
    • (2012) J. Hydrol. , vol.428 , pp. 94-103
    • Kisi, O.1    Ozkan, C.2    Akay, B.3
  • 30
    • 84871718113 scopus 로고    scopus 로고
    • Daily suspended sediment load prediction using artificial neural networks and support vector machines
    • Lafadani E.K., Niab A.M., Ahmadi A. Daily suspended sediment load prediction using artificial neural networks and support vector machines. J. Hydrol. 2013, 478:50-62.
    • (2013) J. Hydrol. , vol.478 , pp. 50-62
    • Lafadani, E.K.1    Niab, A.M.2    Ahmadi, A.3
  • 31
    • 34547743385 scopus 로고    scopus 로고
    • Deriving stage-discharge-sediment concentration relationships using fuzzy logic
    • Lohani A.K., Goel N.K., Bhatia K.K.S. Deriving stage-discharge-sediment concentration relationships using fuzzy logic. Hydrol. Sci. J. 2007, 52(4):793-807.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.4 , pp. 793-807
    • Lohani, A.K.1    Goel, N.K.2    Bhatia, K.K.S.3
  • 32
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H., Jain A., Dandy G., Sudheer K. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25:891-909.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 891-909
    • Maier, H.1    Jain, A.2    Dandy, G.3    Sudheer, K.4
  • 33
    • 79951680934 scopus 로고    scopus 로고
    • Suspended sediment load prediction of river systems: an artificial neural network approach
    • Melesse A.M., Ahmad S.M., McClain E., et al. Suspended sediment load prediction of river systems: an artificial neural network approach. Agric. Water Manage. 2011, 98(5):855-866.
    • (2011) Agric. Water Manage. , vol.98 , Issue.5 , pp. 855-866
    • Melesse, A.M.1    Ahmad, S.M.2    McClain, E.3
  • 34
    • 77956185599 scopus 로고    scopus 로고
    • Regionalization of a conceptual rainfall-runoff model based on similarity of the flow duration curve: a case study from the semi-arid Karkheh basin, Iran
    • Mishra I., Uhlenbrook S., Maskey S., Ahmad M.D. Regionalization of a conceptual rainfall-runoff model based on similarity of the flow duration curve: a case study from the semi-arid Karkheh basin, Iran. J. Hydrol. 2010, 391:188-201.
    • (2010) J. Hydrol. , vol.391 , pp. 188-201
    • Mishra, I.1    Uhlenbrook, S.2    Maskey, S.3    Ahmad, M.D.4
  • 35
    • 72249110007 scopus 로고    scopus 로고
    • Hydrometric network evaluation for Canadian watersheds
    • Mishra A.K., Coulibaly P. Hydrometric network evaluation for Canadian watersheds. J. Hydrol. 2010, 380(3):420-437.
    • (2010) J. Hydrol. , vol.380 , Issue.3 , pp. 420-437
    • Mishra, A.K.1    Coulibaly, P.2
  • 37
    • 84892847714 scopus 로고    scopus 로고
    • Time series separation and reconstruction technique to estimate daily suspended sediment concentrations
    • Mohamoud Y.M. Time series separation and reconstruction technique to estimate daily suspended sediment concentrations. J. Hydrol. Eng. 2014, 19(2):328-338.
    • (2014) J. Hydrol. Eng. , vol.19 , Issue.2 , pp. 328-338
    • Mohamoud, Y.M.1
  • 38
    • 80052924174 scopus 로고    scopus 로고
    • Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction
    • Mount N.J., Abrahart R.J. Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction. Hydrol. Process. 2011, 25:3144-3157.
    • (2011) Hydrol. Process. , vol.25 , pp. 3144-3157
    • Mount, N.J.1    Abrahart, R.J.2
  • 39
    • 80053453552 scopus 로고    scopus 로고
    • Comparison of artificial neural network for prediction of suspended sediment discharge in river - a case study in Malaysia
    • Mustafa M., Isa M.H., Rezaur R.B. Comparison of artificial neural network for prediction of suspended sediment discharge in river - a case study in Malaysia. World Acad. Sci. Eng. Technol. 2011, 81:372-376.
    • (2011) World Acad. Sci. Eng. Technol. , vol.81 , pp. 372-376
    • Mustafa, M.1    Isa, M.H.2    Rezaur, R.B.3
  • 40
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10(3):282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 41
    • 84948105570 scopus 로고    scopus 로고
    • NeuralTools Version 6 by Palisade Corporation. http://www.palisade.com/neuraltools/.
  • 42
    • 0032580320 scopus 로고    scopus 로고
    • Two sided confidence intervals for the single proportion: comparison of seven methods
    • Newcombe R.G. Two sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 1998, 17(8):857-872.
    • (1998) Stat. Med. , vol.17 , Issue.8 , pp. 857-872
    • Newcombe, R.G.1
  • 43
    • 0042861717 scopus 로고    scopus 로고
    • Impact assessment model for clear water fishes exposed to excessively cloudy water
    • Newcombe C.P. Impact assessment model for clear water fishes exposed to excessively cloudy water. J. Am. Water Resour. Assoc. 2003, 39(3):529-544.
    • (2003) J. Am. Water Resour. Assoc. , vol.39 , Issue.3 , pp. 529-544
    • Newcombe, C.P.1
  • 44
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22:466-472. 10.1016/j.engappai.2008.09.003.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 46
    • 84942255362 scopus 로고    scopus 로고
    • Retrieval of soil moisture by artificial neural networks using X-band ground based data
    • Pandey A., Prasad R., Srivastava J., Pandey S. Retrieval of soil moisture by artificial neural networks using X-band ground based data. Russ. Agric. Sci. 2012, 38(3):230-233.
    • (2012) Russ. Agric. Sci. , vol.38 , Issue.3 , pp. 230-233
    • Pandey, A.1    Prasad, R.2    Srivastava, J.3    Pandey, S.4
  • 47
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting - evolutionary computation methods versus the Levenberg-Marquardt approach
    • Piotrowski A.P., Napiorkowski J.J. Optimizing neural networks for river flow forecasting - evolutionary computation methods versus the Levenberg-Marquardt approach. J. Hydrol. 2011, 407(1):1-4.
    • (2011) J. Hydrol. , vol.407 , Issue.1 , pp. 1-4
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 48
    • 84871010255 scopus 로고    scopus 로고
    • A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modeling
    • Piotrowski A.P., Napiorkowski J.J. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modeling. J. Hydrol. 2013, 476:97-111.
    • (2013) J. Hydrol. , vol.476 , pp. 97-111
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 49
    • 73249147931 scopus 로고    scopus 로고
    • Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model
    • Rajaee T., Mirbagheri S.A., Nourani V., Alikhani A. Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model. Int. J. Environ. Sci. Technol. 2010, 7(1):93-110.
    • (2010) Int. J. Environ. Sci. Technol. , vol.7 , Issue.1 , pp. 93-110
    • Rajaee, T.1    Mirbagheri, S.A.2    Nourani, V.3    Alikhani, A.4
  • 50
    • 79961076393 scopus 로고    scopus 로고
    • River suspended sediment load prediction: application of ANN and wavelet conjunction model
    • Rajaee T., Nourani V., Zounemat-Kermani M., Kisi O. River suspended sediment load prediction: application of ANN and wavelet conjunction model. J. Hydrol. Eng. 2011, 16:613-627. 10.1061/(ASCE)HE.1943-5584.0000347.
    • (2011) J. Hydrol. Eng. , vol.16 , pp. 613-627
    • Rajaee, T.1    Nourani, V.2    Zounemat-Kermani, M.3    Kisi, O.4
  • 51
    • 79958862497 scopus 로고    scopus 로고
    • Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers
    • Rajaee T. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Sci. Total Environ. 2011, 409:2917-2928. 10.1016/j.scitotenv.2010.11.028.
    • (2011) Sci. Total Environ. , vol.409 , pp. 2917-2928
    • Rajaee, T.1
  • 52
    • 0000329864 scopus 로고    scopus 로고
    • Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE)
    • (coordinators) U.S. Department of Agriculture
    • Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., (coordinators) 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, vol. 703, U.S. Department of Agriculture, 404 pp.
    • (1997) Agriculture Handbook , vol.703 , pp. 404
    • Renard, K.G.1    Foster, G.R.2    Weesies, G.A.3    McCool, D.K.4    Yoder, D.C.5
  • 53
    • 84868300936 scopus 로고    scopus 로고
    • Regional regression models of watershed suspended-sediment discharge for the Eastern United States
    • Roman D.C., Vogel R.M., Schwarz G.E. Regional regression models of watershed suspended-sediment discharge for the Eastern United States. J. Hydrol. 2012, 472:53-62.
    • (2012) J. Hydrol. , vol.472 , pp. 53-62
    • Roman, D.C.1    Vogel, R.M.2    Schwarz, G.E.3
  • 54
    • 84883542122 scopus 로고    scopus 로고
    • Impervious surfaces and sewer pipe effects on stormwater runoff temperature
    • Sabouri F., Gharabaghi B., Mahboubi A., McBean E. Impervious surfaces and sewer pipe effects on stormwater runoff temperature. J. Hydrol. 2013, 502:10-17.
    • (2013) J. Hydrol. , vol.502 , pp. 10-17
    • Sabouri, F.1    Gharabaghi, B.2    Mahboubi, A.3    McBean, E.4
  • 55
    • 39649087795 scopus 로고    scopus 로고
    • Development, evaluation and interpretation of sediment rating curves for a Japanese small mountainous reforested watershed
    • Sadeghi S.H.R., Mizuyama T., Miyata S., Gomi T., Kosugi K., Fukushima T., Mizugaki S., Onda Y. Development, evaluation and interpretation of sediment rating curves for a Japanese small mountainous reforested watershed. Geoderma 2007, 144(1-2):198-211.
    • (2007) Geoderma , vol.144 , Issue.1-2 , pp. 198-211
    • Sadeghi, S.H.R.1    Mizuyama, T.2    Miyata, S.3    Gomi, T.4    Kosugi, K.5    Fukushima, T.6    Mizugaki, S.7    Onda, Y.8
  • 56
    • 84925742315 scopus 로고    scopus 로고
    • Gene expression models for prediction of longitudinal dispersion coefficients in streams
    • Sattar A., Gharabaghi B. Gene expression models for prediction of longitudinal dispersion coefficients in streams. J. Hydrol. 2015, 524:587-596.
    • (2015) J. Hydrol. , vol.524 , pp. 587-596
    • Sattar, A.1    Gharabaghi, B.2
  • 57
    • 48249156206 scopus 로고    scopus 로고
    • Concentration-duration-frequency curves for stream turbidity: possibilities for assessing biological impairment
    • Schwartz J., Dahle M., Robinson B. Concentration-duration-frequency curves for stream turbidity: possibilities for assessing biological impairment. J. Am. Water Resour. Assoc. 2008, 44(4):879-886.
    • (2008) J. Am. Water Resour. Assoc. , vol.44 , Issue.4 , pp. 879-886
    • Schwartz, J.1    Dahle, M.2    Robinson, B.3
  • 58
    • 84855825466 scopus 로고    scopus 로고
    • Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India
    • Singh A., Imtiyaz M., Isaac R.K., Denis D.M. Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agric. Water Manage. 2011, 104:113-120.
    • (2011) Agric. Water Manage. , vol.104 , pp. 113-120
    • Singh, A.1    Imtiyaz, M.2    Isaac, R.K.3    Denis, D.M.4
  • 59
    • 0347413682 scopus 로고    scopus 로고
    • IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences
    • Sivapalan M., Takeuchi K., Franks S.W., Gupta V.K.H., et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48(6):857-880.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.6 , pp. 857-880
    • Sivapalan, M.1    Takeuchi, K.2    Franks, S.W.3    Gupta, V.K.H.4
  • 60
  • 61
    • 0033850180 scopus 로고    scopus 로고
    • Estimating fluvial sediment transport: the rating parameters
    • Syvitski J.P., Morehead M.D., Bahr D.B., Mulder T. Estimating fluvial sediment transport: the rating parameters. Water Resour. Res. 2000, 36(9):2747-2760.
    • (2000) Water Resour. Res. , vol.36 , Issue.9 , pp. 2747-2760
    • Syvitski, J.P.1    Morehead, M.D.2    Bahr, D.B.3    Mulder, T.4
  • 62
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G. Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 2002, 47(6):879-892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 63
    • 0242658864 scopus 로고    scopus 로고
    • Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces
    • Tayfur G., Ozdemir S., Singh V.P. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Adv. Water Resour. 2003, 26(12):1249-1256.
    • (2003) Adv. Water Resour. , vol.26 , Issue.12 , pp. 1249-1256
    • Tayfur, G.1    Ozdemir, S.2    Singh, V.P.3
  • 64
    • 84926051979 scopus 로고    scopus 로고
    • Event-based soil loss models for construction sites
    • Trenouth W.R., Gharabaghi B. Event-based soil loss models for construction sites. J. Hydrol. 2015, 524:780-788.
    • (2015) J. Hydrol. , vol.524 , pp. 780-788
    • Trenouth, W.R.1    Gharabaghi, B.2
  • 66
    • 0028668785 scopus 로고
    • Flow duration curves. I: New interpretation and confidence intervals
    • Vogel R.M., Fennessey N.M. Flow duration curves. I: New interpretation and confidence intervals. J. Water Res. Plann. Manage. 1994, 120:485-504.
    • (1994) J. Water Res. Plann. Manage. , vol.120 , pp. 485-504
    • Vogel, R.M.1    Fennessey, N.M.2
  • 69
    • 33749316245 scopus 로고    scopus 로고
    • RUSLEFAC - Revised Universal Soil Loss Equation for Application in Canada: A Handbook for Estimating Soil Loss from Water Erosion in Canada
    • (Eds.), Research Branch, Agriculture and Agri-Food Canada, Ottawa. Contribution No. AAFC/AAC2244E
    • Wall, G.J., Coote, D.R., Pringle, E.A., Shelton, I.J. (Eds.), 2002. RUSLEFAC - Revised Universal Soil Loss Equation for Application in Canada: A Handbook for Estimating Soil Loss from Water Erosion in Canada. Research Branch, Agriculture and Agri-Food Canada, Ottawa. Contribution No. AAFC/AAC2244E, 117pp.
    • (2002) , pp. 117
    • Wall, G.J.1    Coote, D.R.2    Pringle, E.A.3    Shelton, I.J.4
  • 70
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu C.L., Chau K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399(3):394-409.
    • (2011) J. Hydrol. , vol.399 , Issue.3 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 71
    • 84862778342 scopus 로고    scopus 로고
    • Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves
    • Zhang W., Wei X., Zheng J., Zhu Y., Zhang Y. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Cont. Shelf Res. 2012, 38(15):35-46.
    • (2012) Cont. Shelf Res. , vol.38 , Issue.15 , pp. 35-46
    • Zhang, W.1    Wei, X.2    Zheng, J.3    Zhu, Y.4    Zhang, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.