메뉴 건너뛰기




Volumn 81, Issue , 2011, Pages 372-376

A comparison of artificial neural networks for prediction of suspended sediment discharge in river-a case study in Malaysia

Author keywords

ANN; Discharge; Modeling; Prediction; Suspended sediment

Indexed keywords

ANN; COEFFICIENT OF DETERMINATION; MALAYSIA; MEAN ABSOLUTE ERROR; MULTI-LAYER FEED FORWARD; NETWORK MODELS; NONLINEAR BEHAVIOR; OBSERVED DATA; PERFORMANCE EVALUATION; PREDICTIVE PERFORMANCE; RBF NETWORK MODEL; ROOT MEAN SQUARE ERRORS; STATISTICAL PARAMETERS; TIME-SERIES DATA; TRAINING AND TESTING; WATER DISCHARGES;

EID: 80053453552     PISSN: 2010376X     EISSN: 20103778     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (18)
  • 1
    • 84952642779 scopus 로고    scopus 로고
    • Application of artificial neural networks for flood forecasting
    • D. F. Lekkas, C. Onof, M. J. Lee, and E. A. Baltas, Application of Artificial Neural Networks for Flood Forecasting Global Nest: The Int. J., vol. 6, pp. 205-211, 2004.
    • (2004) Global Nest: The Int. J , vol.6 , pp. 205-211
    • Lekkas, D.F.1    Onof, C.2    Lee, M.J.3    Baltas, E.A.4
  • 5
    • 9444245344 scopus 로고    scopus 로고
    • Rainfall-Runoff modelling using three Neural Network Methods
    • L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. A. Zadeh, (Eds), ICAISC 2004. ed: Springer Berlin/Heidelberg
    • H. K. Cigizoglu and M. Alp, Rainfall-Runoff modelling using three Neural Network Methods, In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. A. Zadeh, (Eds). Artificial Intelligence and Soft Computing - ICAISC 2004. ed: Springer Berlin/Heidelberg, vol. 3070 pp. 166-171, 2004.
    • (2004) Artificial Intelligence and Soft Computing , vol.3070 , pp. 166-171
    • Cigizoglu, H.K.1    Alp, M.2
  • 6
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • H. K. Cigizoglu, Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons, Advances in Water Resources, vol. 27, pp. 185-195, 2004.
    • (2004) Advances in Water Resources , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 7
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • H. K. Cigizoglu and M. Alp, Generalized regression neural network in modelling river sediment yield, Adv. Eng. Softw., vol. 37, pp. 63-68, 2006.
    • (2006) Adv. Eng. Softw , vol.37 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 8
    • 69249091837 scopus 로고    scopus 로고
    • Reservoir sedimentation estimation using Artificial Neural Network
    • V. Jothiprakash and V. Garg, Reservoir sedimentation estimation using Artificial Neural Network, Journal of Hydrologic Engineering, vol. 14, pp. 1035-1040, 2009.
    • (2009) Journal of Hydrologic Engineering , vol.14 , pp. 1035-1040
    • Jothiprakash, V.1    Garg, V.2
  • 9
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using Artificial Neural Network Model
    • H. M. Nagy, K. Watanabe, and M. Hirano, Prediction of sediment load concentration in rivers using Artificial Neural Network Model, Journal of Hydraulic Engineering, vol. 128, pp. 588-595, 2002.
    • (2002) Journal of Hydraulic Engineering , vol.128 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 10
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • M. Alp and H. K. Cigizoglu, Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data, Environmental Modelling & Software, vol. 22, pp. 2-13, 2007.
    • (2007) Environmental Modelling & Software , vol.22 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 11
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems, vol. 2, pp. 321-355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 13
    • 80053448396 scopus 로고    scopus 로고
    • Rainfall runoff modeling using radial basis function neural network for Sungai Tinjar Catchment, Miri, Sarawak
    • S. Suhaimi, Rosmina A. Bustami, Rainfall Runoff Modeling using Radial Basis Function Neural Network for Sungai Tinjar Catchment, Miri, Sarawak, UNIMAS E-Journal of Civil Engineering, vol. 1, 2009.
    • (2009) UNIMAS E-Journal of Civil Engineering , pp. 1
    • Suhaimi, S.1    Bustami, R.A.2
  • 14
    • 85014958498 scopus 로고    scopus 로고
    • Using radial basis function neural network to calibrate water quality model, world academy of science
    • L. Ma, K. Xin, and S. Liu, Using Radial Basis Function Neural Network to calibrate Water Quality Model, World Academy of Science, Engineering and Technology, vol. 38, pp. 385-393, 2008.
    • (2008) Engineering and Technology , vol.38 , pp. 385-393
    • Ma, L.1    Xin, K.2    Liu, S.3
  • 16
    • 85032752004 scopus 로고
    • Progress in supervised neural networks: What's new since Lippmann?
    • D. R. Hush and B. G. Horne, Progress in supervised neural networks: What's new since Lippmann?, IEEE Signal Processing magazine, pp. 8-39, 1993.
    • (1993) IEEE Signal Processing Magazine , pp. 8-39
    • Hush, D.R.1    Horne, B.G.2
  • 17
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • H. R. Maier and G. C. Dandy, The use of artificial neural networks for the prediction of water quality parameters, Water Resources Research., vol. 32, pp. 1013-1022, 1996.
    • (1996) Water Resources Research , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.