메뉴 건너뛰기




Volumn 24, Issue 6, 2015, Pages 707-730

Fast rule mining in ontological knowledge bases with AMIE+

Author keywords

ILP; Inductive logic programming; Knowledge bases; Rule mining

Indexed keywords

DATA MINING;

EID: 84947127173     PISSN: 10668888     EISSN: 0949877X     Source Type: Journal    
DOI: 10.1007/s00778-015-0394-1     Document Type: Article
Times cited : (506)

References (45)
  • 1
    • 84901774102 scopus 로고    scopus 로고
    • Synonym analysis for predicate expansion
    • Abedjan Z., Naumann F.: Synonym analysis for predicate expansion. In: ESWC (2013)
    • (2013) ESWC
    • Abedjan, Z.1    Naumann, F.2
  • 2
    • 84893137201 scopus 로고    scopus 로고
    • Reconciling ontologies and the web of data
    • Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: CIKM (2012)
    • (2012) CIKM
    • Abedjan, Z.1    Lorey, J.2    Naumann, F.3
  • 3
    • 0011395616 scopus 로고
    • Declarative bias for specific-to-general ilp systems
    • Adé, H., Raedt, L., Bruynooghe, M.: Declarative bias for specific-to-general ilp systems. Mach. Learn. 20, 119–154 (1995)
    • (1995) Mach. Learn. , vol.20 , pp. 119-154
    • Adé, H.1    Raedt, L.2    Bruynooghe, M.3
  • 4
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD (1993)
    • (1993) SIGMOD
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 7
    • 79960125440 scopus 로고    scopus 로고
    • E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning
    • Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI (2010)
    • (2010) AAAI
    • Carlson, A.1    Betteridge, J.2    Kisiel, B.3    Settles, B.4
  • 8
    • 84891136755 scopus 로고    scopus 로고
    • Design and evaluation of storage organizations for read-optimized main memory databases
    • Chasseur, C., Patel, J.M.: Design and evaluation of storage organizations for read-optimized main memory databases. Proc. VLDB Endow. 6(13), 1474–1485 (2013)
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.13 , pp. 1474-1485
    • Chasseur, C.1    Patel, J.M.2
  • 9
    • 24044517207 scopus 로고    scopus 로고
    • Frequent subtree mining: an overview
    • Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining: an overview. Fundam. Inf. 66(1–2), 26–37 (2004)
    • (2004) Fundam. Inf. , vol.66 , Issue.1-2 , pp. 26-37
    • Chi, Y.1    Muntz, R.R.2    Nijssen, S.3    Kok, J.N.4
  • 10
    • 26944490869 scopus 로고    scopus 로고
    • Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text
    • Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI (2004)
    • (2004) ECAI
    • Cimiano, P.1    Hotho, A.2    Staab, S.3
  • 12
    • 79960032696 scopus 로고    scopus 로고
    • Inductive learning for the semantic web: what does it buy?
    • d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the semantic web: what does it buy? Semant. Web 1(1,2), 53–59 (2010)
    • (2010) Semant. Web , vol.1 , Issue.2 , pp. 53-59
    • d’Amato, C.1    Fanizzi, N.2    Esposito, F.3
  • 14
    • 33947709517 scopus 로고    scopus 로고
    • Discovery of relational association rules
    • Springer, New York
    • Dehaspe, L., Toironen, H.: Discovery of relational association rules. In: Relational Data Mining. Springer, New York (2000)
    • (2000) Relational Data Mining
    • Dehaspe, L.1    Toironen, H.2
  • 15
    • 22644450056 scopus 로고    scopus 로고
    • Discovery of frequent DATALOG patterns
    • Dehaspe, L., Toivonen, H.: Discovery of frequent DATALOG patterns. Data Min. Knowl. Discov. 3(1), 7–36 (1999)
    • (1999) Data Min. Knowl. Discov. , vol.3 , Issue.1 , pp. 7-36
    • Dehaspe, L.1    Toivonen, H.2
  • 17
    • 84880561534 scopus 로고    scopus 로고
    • AMIE: association rule mining under incomplete evidence in ontological knowledge bases
    • Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW (2013)
    • (2013) WWW
    • Galárraga, L.A.1    Teflioudi, C.2    Hose, K.3    Suchanek, F.M.4
  • 19
    • 0000534475 scopus 로고
    • Logic and conversation
    • Grice, P.: Logic and conversation. J. Syntax Semant. 3, 41–58 (1975)
    • (1975) J. Syntax Semant. , vol.3 , pp. 41-58
    • Grice, P.1
  • 20
    • 33845397802 scopus 로고    scopus 로고
    • Learning meta-descriptions of the FOAF network
    • Grimnes, G.A., Edwards, P., Preece, A.D.: Learning meta-descriptions of the FOAF network. In: ISWC (2004)
    • (2004) ISWC
    • Grimnes, G.A.1    Edwards, P.2    Preece, A.D.3
  • 21
    • 73549088904 scopus 로고    scopus 로고
    • Learning of OWL class descriptions on very large knowledge bases
    • Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semant. Web Inf. Syst. 5(2), 25–48 (2009)
    • (2009) Int. J. Semant. Web Inf. Syst. , vol.5 , Issue.2 , pp. 25-48
    • Hellmann, S.1    Lehmann, J.2    Auer, S.3
  • 23
    • 77957267793 scopus 로고    scopus 로고
    • The role of semantics in mining frequent patterns from knowledge bases in description logics with rules
    • Jozefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theory Pract. Log. Program. 10(3), 251–289 (2010)
    • (2010) Theory Pract. Log. Program. , vol.10 , Issue.3 , pp. 251-289
    • Jozefowska, J.1    Lawrynowicz, A.2    Lukaszewski, T.3
  • 25
    • 73549116767 scopus 로고    scopus 로고
    • DL-learner: learning concepts In Description logics
    • Lehmann, J.: DL-learner: learning concepts In Description logics. J. Mach. Learn. Res. (JMLR) 10, 2639–2642 (2009)
    • (2009) J. Mach. Learn. Res. (JMLR) , vol.10 , pp. 2639-2642
    • Lehmann, J.1
  • 26
    • 42949097926 scopus 로고    scopus 로고
    • Building rules on top of ontologies for the semantic web with inductive logic programming
    • Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. TPLP 8(3), 271–300 (2008)
    • (2008) TPLP , vol.8 , Issue.3 , pp. 271-300
    • Lisi, F.A.1
  • 27
    • 1542326113 scopus 로고    scopus 로고
    • Clustering ontology-based metadata in the semantic web
    • Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: PKDD (2002)
    • (2002) PKDD
    • Maedche, A.1    Zacharias, V.2
  • 28
    • 85084015485 scopus 로고    scopus 로고
    • Yago3: a knowledge base from multilingual wikipedias
    • Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: a knowledge base from multilingual wikipedias. In: CIDR (2015)
    • (2015) CIDR
    • Mahdisoltani, F.1    Biega, J.2    Suchanek, F.M.3
  • 30
    • 0001898976 scopus 로고    scopus 로고
    • An environment for merging and testing large ontologies
    • McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: KR (2000)
    • (2000) KR
    • McGuinness, D.L.1    Fikes, R.2    Rice, J.3    Wilder, S.4
  • 31
    • 77951503082 scopus 로고
    • Inverse entailment and progol
    • Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3&4), 245–286 (1995)
    • (1995) New Gener. Comput. , vol.13 , Issue.3-4 , pp. 245-286
    • Muggleton, S.1
  • 32
    • 84949207675 scopus 로고    scopus 로고
    • Learning from positive data
    • Muggleton, S.: Learning from positive data. In: ILP (1997)
    • (1997) ILP
    • Muggleton, S.1
  • 34
    • 80052417978 scopus 로고    scopus 로고
    • Finding association rules in semantic web data
    • Nebot, V., Berlanga, R.: Finding association rules in semantic web data. Knowl Based Syst. 25(1), 51–62 (2012)
    • (2012) Knowl Based Syst. , vol.25 , Issue.1 , pp. 51-62
    • Nebot, V.1    Berlanga, R.2
  • 35
    • 84860859524 scopus 로고    scopus 로고
    • Factorizing yago: scalable machine learning for linked data
    • Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: WWW (2012)
    • (2012) WWW
    • Nickel, M.1    Tresp, V.2    Kriegel, H.P.3
  • 36
    • 85153236076 scopus 로고    scopus 로고
    • PROMPT: algorithm and tool for automated ontology merging and alignment
    • Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI. AAAI Press (2000)
    • (2000) AAAI/IAAI. AAAI Press
    • Noy, N.F.1    Musen, M.A.2
  • 37
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
    • (2006) Mach. Learn. , vol.62 , Issue.1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 39
    • 84861067655 scopus 로고    scopus 로고
    • PARIS: probabilistic alignment of relations, instances, and schema
    • Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of relations, instances, and schema. PVLDB 5(3), 157–168 (2011)
    • (2011) PVLDB , vol.5 , Issue.3 , pp. 157-168
    • Suchanek, F.M.1    Abiteboul, S.2    Senellart, P.3
  • 41
    • 0242625291 scopus 로고    scopus 로고
    • Selecting the right interestingness measure for association patterns
    • Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD (2002)
    • (2002) KDD
    • Tan, P.N.1    Kumar, V.2    Srivastava, J.3
  • 42
    • 84947132377 scopus 로고    scopus 로고
    • Technologies, M.: The freebase project
    • Technologies, M.: The freebase project. http://freebase.com
  • 43
    • 84871040035 scopus 로고    scopus 로고
    • Statistical schema induction
    • Völker, J., Niepert, M.: Statistical schema induction. In: ESWC (2011)
    • (2011) ESWC
    • Völker, J.1    Niepert, M.2
  • 44
    • 84947132378 scopus 로고    scopus 로고
    • Word Wide Web Consortium: RDF Primer (W3C Recommendation 2004–02-10). (2004)
    • Word Wide Web Consortium: RDF Primer (W3C Recommendation 2004–02-10). http://www.w3.org/TR/rdf-primer/ (2004)
  • 45
    • 84938072550 scopus 로고    scopus 로고
    • QuickFOIL: scalable inductive logic programming
    • Zeng, Q., Patel, J., Page, D.: QuickFOIL: scalable inductive logic programming. In: VLDB (2014)
    • (2014) VLDB
    • Zeng, Q.1    Patel, J.2    Page, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.