메뉴 건너뛰기




Volumn 1, Issue 1-2, 2010, Pages 53-59

Inductive learning for the Semantic Web: What does it buy?

Author keywords

Inductive learning; Ontology mining; Uncertainty

Indexed keywords


EID: 79960032696     PISSN: 15700844     EISSN: 22104968     Source Type: Journal    
DOI: 10.3233/SW-2010-0007     Document Type: Article
Times cited : (45)

References (48)
  • 5
    • 49949085013 scopus 로고    scopus 로고
    • Kernel methods for mining instance data in ontologies
    • K. Aberer et al., editors LNCS Springer
    • S. Bloehdorn and Y. Sure. Kernel methods for mining instance data in ontologies. In K. Aberer et al., editors, Proc. of the International Semantic Web Conference, volume 4825 of LNCS, pages 58-71. Springer, 2007.
    • (2007) Proc. of the International Semantic Web Conference , vol.4825 , pp. 58-71
    • Bloehdorn, S.1    Sure, Y.2
  • 8
    • 45449113153 scopus 로고    scopus 로고
    • Query answering and ontology population: An inductive approach
    • S. Bechhofer et al., editors LNCS Springer
    • C. d'Amato, N. Fanizzi, and F. Esposito. Query answering and ontology population: An inductive approach. In S. Bechhofer et al., editors, Proc. of the 5th European Semantic Web Conference, volume 5021 of LNCS, pages 288-302. Springer, 2008.
    • (2008) Proc. of the 5th European Semantic Web Conference , vol.5021 , pp. 288-302
    • D'Amato, C.1    Fanizzi, N.2    Esposito, F.3
  • 12
    • 33750354420 scopus 로고    scopus 로고
    • A declarative kernel for ALC concept descriptions
    • F. Esposito et al., editors Bari, Italy, September 27-29, 2006, Proceedings LNCS Springer
    • N. Fanizzi and C. d'Amato. A declarative kernel for ALC concept descriptions. In F. Esposito et al., editors, Foundations of Intelligent Systems, 16th International Symposium, IS-MIS 2006, Bari, Italy, September 27-29, 2006, Proceedings, volume 4203 of LNCS, pages 322-331. Springer, 2006.
    • (2006) Foundations of Intelligent Systems, 16th International Symposium, IS-MIS 2006 , vol.4203 , pp. 322-331
    • Fanizzi, N.1    D'Amato, C.2
  • 13
    • 45449103258 scopus 로고    scopus 로고
    • Conceptual clustering and its application to concept drift and novelty detection
    • LNCS Springer
    • N. Fanizzi, C. d'Amato, and F. Esposito. Conceptual clustering and its application to concept drift and novelty detection. In Proc. of the Europ. Semantic Web Conference, volume 5021 of LNCS, pages 318-332. Springer, 2008.
    • (2008) Proc. of the Europ. Semantic Web Conference , vol.5021 , pp. 318-332
    • Fanizzi, N.1    D'Amato, C.2    Esposito, F.3
  • 14
    • 57349094275 scopus 로고    scopus 로고
    • Statistical learning for inductive query answering on owl ontologies
    • A. P. Sheth et al., editors LNCS, Springer
    • N. Fanizzi, C. d'Amato, and F. Esposito. Statistical learning for inductive query answering on owl ontologies. In A. P. Sheth et al., editors, International Semantic Web Conference, volume 5318 of LNCS, pages 195-212. Springer, 2008.
    • (2008) International Semantic Web Conference , vol.5318 , pp. 195-212
    • Fanizzi, N.1    D'Amato, C.2    Esposito, F.3
  • 17
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 20
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The databoost-im approach
    • H. Guo and V. L. Herna. Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. SIGKDD Explor. Newsl., 6(1):30-39, 2004.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Herna, V.L.2
  • 22
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining -a general survey and comparison
    • J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining -a general survey and comparison. SIGKDD Explorations, 2(2):1-58, 2000.
    • (2000) SIGKDD Explorations , vol.2 , Issue.2 , pp. 1-58
    • Hipp, J.1    Güntzer, U.2    Nakhaeizadeh, G.3
  • 23
    • 33847700478 scopus 로고    scopus 로고
    • An algorithm based on counterfactuals for concept learning in the semantic web
    • L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals for concept learning in the semantic web. Appl. Intell., 26(2):139-159, 2007.
    • (2007) Appl. Intell , vol.26 , Issue.2 , pp. 139-159
    • Iannone, L.1    Palmisano, I.2    Fanizzi, N.3
  • 26
    • 0342984487 scopus 로고
    • A polynomial approach to the constructive induction of structural knowledge
    • J. Kietz and K. Morik. A polynomial approach to the constructive induction of structural knowledge. Machine Learning, 14(1):193-217, 1994.
    • (1994) Machine Learning , vol.14 , Issue.1 , pp. 193-217
    • Kietz, J.1    Morik, K.2
  • 27
    • 84885222835 scopus 로고    scopus 로고
    • Rough description logics for modeling uncertainty in instance unification
    • F. Bobillo et al., editors CEUR Workshop Proceedings. CEUR-WS.org
    • M. C. A. Klein, P. Mika, and S. Schlobach. Rough description logics for modeling uncertainty in instance unification. In F. Bobillo et al., editors, Proc. of the 3rd ISWC Workshop on Uncertainty Reasoning for the Semantic Web, volume 327 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.
    • (2008) Proc. of the 3rd ISWC Workshop on Uncertainty Reasoning for the Semantic Web , vol.327
    • Klein, M.C.A.1    Mika, P.2    Schlobach, S.3
  • 28
    • 77952426586 scopus 로고    scopus 로고
    • Concept learning in description logics using refinement operators
    • J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators. Machine Learning, 78:203-250, 2010.
    • (2010) Machine Learning , vol.78 , pp. 203-250
    • Lehmann, J.1    Hitzler, P.2
  • 29
    • 84878083672 scopus 로고    scopus 로고
    • Exploratory under-sampling for class-imbalance learning
    • IEEE Computer Society
    • X. Liu, J. Wu, and Z. Zhou. Exploratory under-sampling for class-imbalance learning. In Proc. of the Int. Conf. on Data Mining, pages 965-969. IEEE Computer Society, 2006.
    • (2006) Proc. of the Int. Conf. on Data Mining , pp. 965-969
    • Liu, X.1    Wu, J.2    Zhou, Z.3
  • 30
    • 38649122051 scopus 로고    scopus 로고
    • Expressive probabilistic description logics
    • T. Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-7):852-883, 2008.
    • (2008) Artif. Intell , vol.172 , Issue.6-7 , pp. 852-883
    • Lukasiewicz, T.1
  • 31
    • 71549154698 scopus 로고    scopus 로고
    • Uncertainty reasoning for the semantic web
    • LNCS, Springer
    • T. Lukasiewicz. Uncertainty reasoning for the semantic web. In Web Reasoning and Rule Systems, Int. Conf., volume 5837 of LNCS, pages 26-39. Springer, 2009.
    • (2009) Web Reasoning and Rule Systems, Int. Conf , vol.5837 , pp. 26-39
    • Lukasiewicz, T.1
  • 32
    • 56049128175 scopus 로고    scopus 로고
    • Managing uncertainty and vagueness in description logics for the semantic web
    • T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description logics for the semantic web. J. Web Sem., 6(4):291-308, 2008.
    • (2008) J. Web Sem , vol.6 , Issue.4 , pp. 291-308
    • Lukasiewicz, T.1    Straccia, U.2
  • 33
    • 0035267985 scopus 로고    scopus 로고
    • Ontology learning for the semantic web
    • A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent Systems, 16(2):72-79, 2001.
    • (2001) IEEE Intelligent Systems , vol.16 , Issue.2 , pp. 72-79
    • Maedche, A.1    Staab, S.2
  • 35
    • 85005299854 scopus 로고
    • The multipurpose incremental learning system aq15 and its testing appli-cation to three medical domains
    • R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multipurpose incremental learning system aq15 and its testing appli-cation to three medical domains. In AAAI, pages 1041-1047, 1986.
    • (1986) AAAI , pp. 1041-1047
    • Michalski, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 38
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20(1):53-65, 1987.
    • (1987) J. Comput. Appl. Math , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 42
    • 0036375983 scopus 로고    scopus 로고
    • Reasoning within fuzzy description logics
    • U. Straccia. Reasoning within fuzzy description logics. J. Artif. Intell. Res. (JAIR), 14:137-166, 2001.
    • (2001) J. Artif. Intell. Res. (JAIR) , vol.14 , pp. 137-166
    • Straccia, U.1
  • 47
    • 70450193000 scopus 로고    scopus 로고
    • Comparative study on class imbalance learning for credit scoring
    • P. Yao. Comparative study on class imbalance learning for credit scoring. Hybrid Intelligent Systems, International Conference on, 2:105-107, 2009.
    • (2009) Hybrid Intelligent Systems International Conference on , vol.2 , pp. 105-107
    • Yao, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.