메뉴 건너뛰기




Volumn , Issue , 2013, Pages 413-422

AMIE: Association rule mining under incomplete evidence in ontological knowledge bases

Author keywords

ILP; Inductive logic programming; Rule mining

Indexed keywords

ILP; KNOWLEDGE BASIS; KNOWLEDGE BASIS (KBS); OPEN WORLD ASSUMPTION; ORDERS OF MAGNITUDE; RULE MINING; STATE OF THE ART; STATE-OF-THE-ART APPROACH;

EID: 84880561534     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (688)

References (37)
  • 1
    • 84893137201 scopus 로고    scopus 로고
    • Reconciling ontologies and the web of data
    • Z. Abedjan, J. Lorey, and F. Naumann. Reconciling ontologies and the web of data. In CIKM, 2012.
    • (2012) CIKM
    • Abedjan, Z.1    Lorey, J.2    Naumann, F.3
  • 2
    • 0011395616 scopus 로고
    • Declarative bias for specific-to-general ilp systems
    • H. Adé, L. Raedt, and M. Bruynooghe. Declarative bias for specific-to-general ilp systems. Machine Learning, 20, 1995.
    • (1995) Machine Learning , vol.20
    • Adé, H.1    Raedt, L.2    Bruynooghe, M.3
  • 3
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, 1993.
    • (1993) SIGMOD
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 7
    • 26944490869 scopus 로고    scopus 로고
    • Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text
    • P. Cimiano, A. Hotho, and S. Staab. Comparing Conceptual, Divisive and Agglomerative Clustering for Learning Taxonomies from Text. In ECAI, 2004.
    • (2004) ECAI
    • Cimiano, P.1    Hotho, A.2    Staab, S.3
  • 9
    • 79960032696 scopus 로고    scopus 로고
    • Inductive learning for the semantic web: What does it buy?
    • Apr.
    • C. d'Amato, N. Fanizzi, and F. Esposito. Inductive learning for the Semantic Web: What does it buy? Semant. web, 1(1,2), Apr. 2010.
    • (2010) Semant. Web , vol.1 , Issue.1-2
    • D'Amato, C.1    Fanizzi, N.2    Esposito, F.3
  • 11
    • 33947709517 scopus 로고    scopus 로고
    • Discovery of relational association rules
    • Springer-Verlag New York, Inc.
    • L. Dehaspe and H. Toironen. Discovery of relational association rules. In Relational Data Mining. Springer-Verlag New York, Inc., 2000.
    • (2000) Relational Data Mining
    • Dehaspe, L.1    Toironen, H.2
  • 12
    • 22644450056 scopus 로고    scopus 로고
    • Discovery of frequent DATALOG patterns
    • Mar.
    • L. Dehaspe and H. Toivonen. Discovery of frequent DATALOG patterns. Data Min. Knowl. Discov., 3(1), Mar. 1999.
    • (1999) Data Min. Knowl. Discov. , vol.3 , Issue.1
    • Dehaspe, L.1    Toivonen, H.2
  • 13
    • 84937697127 scopus 로고    scopus 로고
    • Relational association rules: Getting WARMER
    • Springer Berlin / Heidelberg
    • B. Goethals and J. Van den Bussche. Relational Association Rules: Getting WARMER. In Pattern Detection and Discovery, volume 2447. Springer Berlin / Heidelberg, 2002.
    • (2002) Pattern Detection and Discovery , vol.2447
    • Goethals, B.1    Bussche Den J.Van2
  • 14
    • 33845397802 scopus 로고    scopus 로고
    • Learning meta-descriptions of the FOAF network
    • G. A. Grimnes, P. Edwards, and A. D. Preece. Learning Meta-descriptions of the FOAF Network. In ISWC, 2004.
    • (2004) ISWC
    • Grimnes, G.A.1    Edwards, P.2    Preece, A.D.3
  • 15
    • 73549088904 scopus 로고    scopus 로고
    • Learning of OWL class descriptions on very large knowledge bases
    • S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL Class Descriptions on Very Large Knowledge Bases. Int. J. Semantic Web Inf. Syst., 5(2), 2009.
    • (2009) Int. J. Semantic Web Inf. Syst. , vol.5 , Issue.2
    • Hellmann, S.1    Lehmann, J.2    Auer, S.3
  • 17
    • 77957267793 scopus 로고    scopus 로고
    • The role of semantics in mining frequent patterns from knowledge bases in description logics with rules
    • J. Jozefowska, A. Lawrynowicz, and T. Lukaszewski. The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theory Pract. Log. Program., 10(3), 2010.
    • (2010) Theory Pract. Log. Program. , vol.10 , Issue.3
    • Jozefowska, J.1    Lawrynowicz, A.2    Lukaszewski, T.3
  • 18
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • IEEE Computer Society
    • M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM. IEEE Computer Society, 2001.
    • (2001) ICDM
    • Kuramochi, M.1    Karypis, G.2
  • 20
    • 42949097926 scopus 로고    scopus 로고
    • Building rules on top of ontologies for the semantic web with inductive logic programming
    • F. A. Lisi. Building rules on top of ontologies for the semantic web with inductive logic programming. TPLP, 8(3):271-300, 2008.
    • (2008) TPLP , vol.8 , Issue.3 , pp. 271-300
    • Lisi, F.A.1
  • 21
    • 1542326113 scopus 로고    scopus 로고
    • Clustering ontology-based metadata in the semantic web
    • A. Maedche and V. Zacharias. Clustering Ontology-Based Metadata in the Semantic Web. In PKDD, 2002.
    • (2002) PKDD
    • Maedche, A.1    Zacharias, V.2
  • 22
    • 52149122728 scopus 로고    scopus 로고
    • L-modified ilp evaluation functions for positive-only biological grammar learning
    • F. Zelezny and N. Lavrac, editors, number 5194 in Lecture notes in artificial intelligence. Springer-Verlag, Berlin / Heidelberg, Germany, Paper originally presented at the 18th International Conference, ILP 2008 Prague, Czech Republic, September 10-12 2008
    • T. Mamer, C. Bryant, and J. McCall. L-modified ilp evaluation functions for positive-only biological grammar learning. In F. Zelezny and N. Lavrac, editors, Inductive logic programming, number 5194 in Lecture notes in artificial intelligence, pages 176-191. Springer-Verlag, Berlin / Heidelberg, Germany, 2008. Paper originally presented at the 18th International Conference, ILP 2008 Prague, Czech Republic, September 10-12 2008.
    • (2008) Inductive Logic Programming , pp. 176-191
    • Mamer, T.1    Bryant, C.2    McCall, J.3
  • 24
    • 0001898976 scopus 로고    scopus 로고
    • An environment for merging and testing large ontologies
    • D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging and Testing Large Ontologies. In KR, 2000.
    • (2000) KR
    • McGuinness, D.L.1    Fikes, R.2    Rice, J.3    Wilder, S.4
  • 25
    • 77951503082 scopus 로고
    • Inverse entailment and progol
    • S. Muggleton. Inverse entailment and progol. New Generation Comput., 13(3&4), 1995.
    • (1995) New Generation Comput. , vol.13 , Issue.3-4
    • Muggleton, S.1
  • 26
    • 0002199718 scopus 로고    scopus 로고
    • Learning from positive data
    • Springer-Verlag
    • S. Muggleton. Learning from positive data. In ILP. Springer-Verlag, 1997.
    • (1997) ILP
    • Muggleton, S.1
  • 28
    • 80052417978 scopus 로고    scopus 로고
    • Finding association rules in semantic web data
    • V. Nebot and R. Berlanga. Finding association rules in semantic web data. Knowl.-Based Syst., 25(1), 2012.
    • (2012) Knowl.-Based Syst. , vol.25 , Issue.1
    • Nebot, V.1    Berlanga, R.2
  • 29
    • 84859172690 scopus 로고    scopus 로고
    • RDF-3X: A RISC-style engine for RDF
    • Aug.
    • T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. Proc. VLDB Endow., 1(1), Aug. 2008.
    • (2008) Proc. VLDB Endow. , vol.1 , Issue.1
    • Neumann, T.1    Weikum, G.2
  • 30
    • 0002295374 scopus 로고    scopus 로고
    • PROMPT: Algorithm and tool for automated ontology merging and alignment
    • AAAI Press
    • N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In AAAI/IAAI. AAAI Press, 2000.
    • (2000) AAAI/IAAI
    • Noy, N.F.1    Musen, M.A.2
  • 33
    • 84861067655 scopus 로고    scopus 로고
    • PARIS: Probabilistic alignment of relations instances and schema
    • F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: Probabilistic Alignment of Relations, Instances, and Schema. PVLDB, 5(3), 2011.
    • (2011) PVLDB , vol.5 , Issue.3
    • Suchanek, F.M.1    Abiteboul, S.2    Senellart, P.3
  • 36
    • 0242625291 scopus 로고    scopus 로고
    • Selecting the right interestingness measure for association patterns
    • P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In KDD, 2002.
    • (2002) KDD
    • Tan, P.-N.1    Kumar, V.2    Srivastava, J.3
  • 37
    • 84871040035 scopus 로고    scopus 로고
    • Statistical schema induction
    • J. Völker and M. Niepert. Statistical schema induction. In ESWC, 2011.
    • (2011) ESWC
    • Völker, J.1    Niepert, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.