메뉴 건너뛰기




Volumn 8, Issue 3, 2014, Pages 197-208

QuickFOIL: Scalable inductive logic programming

Author keywords

[No Author keywords available]

Indexed keywords

FIRST ORDER; INDUCTIVE LOGIC; LARGE DATASETS; LEARN+; LEARNING TECHNIQUES; LOGIC-PROGRAMMING; ORDERING RULES; PRUNING STRATEGY; SCORING FUNCTIONS; SMALL DATA SET;

EID: 84938072550     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2735508.2735510     Document Type: Conference Paper
Times cited : (71)

References (38)
  • 1
    • 60349126987 scopus 로고    scopus 로고
    • Parallel ilp for distributed-memory architectures
    • Parallel ilp for distributed-memory architectures. Machine Learning, 74(3):257-279, 2009.
    • (2009) Machine Learning , vol.74 , Issue.3 , pp. 257-279
  • 2
    • 77954753813 scopus 로고    scopus 로고
    • The datapath system: A data-centric analytic processing engine for large data warehouses
    • S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez. The datapath system: A data-centric analytic processing engine for large data warehouses. SIGMOD, pages 519-530, 2010.
    • (2010) SIGMOD , pp. 519-530
    • Arumugam, S.1    Dobra, A.2    Jermaine, C.M.3    Pansare, N.4    Perez, L.5
  • 3
    • 84881338673 scopus 로고    scopus 로고
    • Main-memory hash joins on multi-core cpus: Tuning to the underlying hardware
    • C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu. Main-memory hash joins on multi-core cpus: Tuning to the underlying hardware. In ICDE, pages 362-373, 2013.
    • (2013) ICDE , pp. 362-373
    • Balkesen, C.1    Teubner, J.2    Alonso, G.3    Ozsu, M.4
  • 4
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks. Science
    • A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999.
    • (1999) , vol.286 , Issue.5439 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 5
    • 22944467501 scopus 로고    scopus 로고
    • FOIL-D: Efficiently scaling foil for multi-relational data mining of large datasets
    • J. Bockhorst and I. Ong. FOIL-D: Efficiently scaling foil for multi-relational data mining of large datasets. In ILP, volume 3194, pages 63-79. 2004.
    • (2004) ILP , vol.3194 , pp. 63-79
    • Bockhorst, J.1    Ong, I.2
  • 6
    • 77954702999 scopus 로고    scopus 로고
    • A scalable, predictable join operator for highly concurrent data warehouses
    • G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable join operator for highly concurrent data warehouses. VLDB, 2(1):277-288, 2009.
    • (2009) VLDB , vol.2 , Issue.1 , pp. 277-288
    • Candea, G.1    Polyzotis, N.2    Vingralek, R.3
  • 8
    • 84958776545 scopus 로고
    • Optimal implementation of conjunctive queries in relational data bases
    • A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases. STOC '77, pages 77-90, 1977.
    • (1977) STOC '77 , pp. 77-90
    • Chandra, A.K.1    Merlin, P.M.2
  • 9
    • 84891136755 scopus 로고    scopus 로고
    • Design and evaluation of storage organizations for read-optimized main memory databases
    • C. Chasseur and J. M. Patel. Design and evaluation of storage organizations for read-optimized main memory databases. VLDB, 6(13):1474-1485, 2013.
    • (2013) VLDB , vol.6 , Issue.13 , pp. 1474-1485
    • Chasseur, C.1    Patel, J.M.2
  • 11
    • 0035312953 scopus 로고    scopus 로고
    • Relational learning with statistical predicate invention: Better models for hypertext
    • M. Craven and S. Slattery. Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning, 43(1-2):97-119, 2001.
    • (2001) Machine Learning , vol.43 , Issue.1-2 , pp. 97-119
    • Craven, M.1    Slattery, S.2
  • 13
    • 18844443559 scopus 로고
    • Handling imperfect data in inductive logic programming
    • S. Džeroski. Handling imperfect data in inductive logic programming. SCAI, pages 111-125, 1993.
    • (1993) SCAI , pp. 111-125
    • Džeroski, S.1
  • 14
    • 84862644049 scopus 로고    scopus 로고
    • Towards a unified architecture for in-RDBMS analytics
    • X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for in-RDBMS analytics. In SIGMOD, pages 325-336, 2012.
    • (2012) SIGMOD , pp. 325-336
    • Feng, X.1    Kumar, A.2    Recht, B.3    Ré, C.4
  • 15
    • 22944447732 scopus 로고    scopus 로고
    • On avoiding redundancy in inductive logic programming
    • N. Fonseca, V. Costa, F. Silva, and R. Camacho. On avoiding redundancy in inductive logic programming. In ILP, volume 3194, pages 132-146. 2004.
    • (2004) ILP , vol.3194 , pp. 132-146
    • Fonseca, N.1    Costa, V.2    Silva, F.3    Camacho, R.4
  • 16
    • 84897574059 scopus 로고
    • Fossil: A robust relational learner
    • J. Fürnkranz. Fossil: A robust relational learner. ECML, pages 122-137, 1994.
    • (1994) ECML , pp. 122-137
    • Fürnkranz, J.1
  • 18
    • 0028381846 scopus 로고
    • Volcano: An extensible and parallel query evaluation system
    • G. Graefe. Volcano: An extensible and parallel query evaluation system. TKDE, 6(1):120-135, 1994.
    • (1994) TKDE , vol.6 , Issue.1 , pp. 120-135
    • Graefe, G.1
  • 19
    • 29844438424 scopus 로고    scopus 로고
    • Qpipe: A simultaneously pipelined relational query engine
    • S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A simultaneously pipelined relational query engine. SIGMOD, pages 383-394, 2005.
    • (2005) SIGMOD , pp. 383-394
    • Harizopoulos, S.1    Shkapenyuk, V.2    Ailamaki, A.3
  • 21
    • 85152515906 scopus 로고
    • An efficient subsumption algorithm for inductive logic programming
    • J.-U. Kietz and M. Lãijbbe. An efficient subsumption algorithm for inductive logic programming. In ICML, pages 130-138, 1994.
    • (1994) ICML , pp. 130-138
    • Kietz, J.-U.1    Lãijbbe, M.2
  • 22
    • 0035789622 scopus 로고    scopus 로고
    • Molecular feature mining in hiv data
    • S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in hiv data. In KDD, pages 136-143, 2001.
    • (2001) KDD , pp. 136-143
    • Kramer, S.1    De Raedt, L.2    Helma, C.3
  • 23
    • 85022193817 scopus 로고
    • Inductive Logic Programming: Techniques and Applications
    • N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. Routledge, 1993.
    • (1993) Routledge
    • Lavrac, N.1    Dzeroski, S.2
  • 25
    • 0036649950 scopus 로고    scopus 로고
    • Optimizing main-memory join on modern hardware
    • S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on modern hardware. TKDE, 14(4):709-730, 2002.
    • (2002) TKDE , vol.14 , Issue.4 , pp. 709-730
    • Manegold, S.1    Boncz, P.2    Kersten, M.3
  • 26
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of t4 phage lysozyme
    • B. W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2):442-451, 1975.
    • (1975) Biochimica et Biophysica Acta (BBA)-Protein Structure , vol.405 , Issue.2 , pp. 442-451
    • Matthews, B.W.1
  • 27
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13(3-4):245-286, 1995.
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 245-286
    • Muggleton, S.1
  • 28
    • 84957053329 scopus 로고
    • Machine invention of first order predicates by inverting resolution
    • S. Muggleton and W. L. Buntine. Machine invention of first order predicates by inverting resolution. In ML, pages 339-352, 1988.
    • (1988) ML , pp. 339-352
    • Muggleton, S.1    Buntine, W.L.2
  • 30
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239-266, 1990.
    • (1990) Machine Learning , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J.R.1
  • 32
    • 0024859193 scopus 로고
    • Proof-tree transformation theorems and their applications
    • R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and M. Y. Vardi. Proof-tree transformation theorems and their applications. PODS, pages 172-181, 1989.
    • (1989) PODS , pp. 172-181
    • Ramakrishnan, R.1    Sagiv, Y.2    Ullman, J.D.3    Vardi, M.Y.4
  • 33
    • 2542454374 scopus 로고    scopus 로고
    • The Aleph manual
    • A. Srinivasan. The Aleph manual. http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html.
    • Srinivasan, A.1
  • 34
    • 84855678613 scopus 로고    scopus 로고
    • Data and task parallelism in ILP using MapReduce
    • A. Srinivasan, T. A. Faruquie, and S. Joshi. Data and task parallelism in ILP using MapReduce. Mach. Learn., 86(1):141-168, 2012.
    • (2012) Mach. Learn , vol.86 , Issue.1 , pp. 141-168
    • Srinivasan, A.1    Faruquie, T.A.2    Joshi, S.3
  • 35
    • 77955015067 scopus 로고    scopus 로고
    • Can ilp be applied to large datasets?
    • H. Watanabe and S. Muggleton. Can ilp be applied to large datasets? In ILP, pages 249-256, 2010.
    • (2010) ILP , pp. 249-256
    • Watanabe, H.1    Muggleton, S.2
  • 36
    • 2442458705 scopus 로고    scopus 로고
    • Crossmine: efficient classification across multiple database relations
    • X. Yin, J. Han, J. Yang, and S. Philip. Crossmine: efficient classification across multiple database relations. In ICDE, pages 399-410, 2004.
    • (2004) ICDE , pp. 399-410
    • Yin, X.1    Han, J.2    Yang, J.3    Philip, S.4
  • 37
    • 85199248317 scopus 로고    scopus 로고
    • QuickFOIL: Scalable inductive logic programming (extended version)
    • Q. Zeng, J. M. Patel, and D. Page. QuickFOIL: Scalable inductive logic programming (extended version). http://research.cs.wisc.edu/quickstep/pubs/quickfoil-extended.pdf.
    • Zeng, Q.1    Patel, J.M.2    Page, D.3
  • 38
    • 85011024369 scopus 로고    scopus 로고
    • Cooperative scans:Dynamic bandwidth sharing in a dbms
    • M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans:Dynamic bandwidth sharing in a dbms. VLDB, pages 723-734, 2007.
    • (2007) VLDB , pp. 723-734
    • Zukowski, M.1    Héman, S.2    Nes, N.3    Boncz, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.