메뉴 건너뛰기




Volumn 6, Issue 5, 2015, Pages

Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery

Author keywords

[No Author keywords available]

Indexed keywords

OFLOXACIN; QUINOLINE DERIVED ANTIINFECTIVE AGENT; ANTIINFECTIVE AGENT; DNA LIGASE;

EID: 84946600316     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00731-15     Document Type: Article
Times cited : (99)

References (59)
  • 2
    • 70449416400 scopus 로고    scopus 로고
    • The direct medical costs of health care-associated infections in U.S. Hospitals and the benefits of prevention
    • Atlanta, GA
    • Scott RD, II. 2009. The direct medical costs of health care-associated infections in U.S. Hospitals and the benefits of prevention. Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/HAI/pdfs/hai/Scott_CostPaper.pdf.
    • (2009) Centers for Disease Control and Prevention
    • Scott, R.D.1
  • 3
    • 0033591467 scopus 로고    scopus 로고
    • Bacterial biofilms: A common cause of persistent infections
    • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318-1322. http://dx.doi.org/10.1126/science.284.5418.1318.
    • (1999) Science , vol.284 , pp. 1318-1322
    • Costerton, J.W.1    Stewart, P.S.2    Greenberg, E.P.3
  • 4
    • 80053906154 scopus 로고    scopus 로고
    • Heterogeneous bacterial persisters and engineering approaches to eliminate them
    • Allison KR, Brynildsen MP, Collins JJ. 2011. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14:593-598. http://dx.doi.org/10.1016/j.mib.2011.09.002.
    • (2011) Curr Opin Microbiol , vol.14 , pp. 593-598
    • Allison, K.R.1    Brynildsen, M.P.2    Collins, J.J.3
  • 5
    • 79957586352 scopus 로고    scopus 로고
    • Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies
    • Fauvart M, De Groote VN, Michiels J. 2011. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699-709. http://dx.doi.org/10.1099/jmm.0.030932-0.
    • (2011) J Med Microbiol , vol.60 , pp. 699-709
    • Fauvart, M.1    De Groote, V.N.2    Michiels, J.3
  • 6
    • 66749179869 scopus 로고    scopus 로고
    • The importance of being persistent: Heterogeneity of bacterial populations under antibiotic stress
    • Gefen O, Balaban NQ. 2009. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33:704-717. http://dx.doi.org/10.1111/j.1574-6976.2008.00156.x.
    • (2009) FEMS Microbiol Rev , vol.33 , pp. 704-717
    • Gefen, O.1    Balaban, N.Q.2
  • 7
    • 84905222366 scopus 로고    scopus 로고
    • Persistence: A copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics
    • Levin BR, Concepción-Acevedo J, Udekwu KI. 2014. Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Curr Opin Microbiol 21:18-21. http://dx.doi.org/10.1016/j.mib.2014.06.016.
    • (2014) Curr Opin Microbiol , vol.21 , pp. 18-21
    • Levin, B.R.1    Concepción-Acevedo, J.2    Udekwu, K.I.3
  • 8
    • 33845607284 scopus 로고    scopus 로고
    • Persister cells, dormancy and infectious disease
    • Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48-56. http://dx.doi.org/10.1038/nrmicro1557.
    • (2007) Nat Rev Microbiol , vol.5 , pp. 48-56
    • Lewis, K.1
  • 9
    • 16244399491 scopus 로고    scopus 로고
    • Phenotypic tolerance: Antibiotic enrichment of noninherited resistance in bacterial populations
    • Wiuff C, Zappala RM, Regoes RR, Garner KN, Baquero F, Levin BR. 2005. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother 49: 1483-1494. http://dx.doi.org/10.1128/AAC.49.4.1483-1494.2005.
    • (2005) Antimicrob Agents Chemother , vol.49 , pp. 1483-1494
    • Wiuff, C.1    Zappala, R.M.2    Regoes, R.R.3    Garner, K.N.4    Baquero, F.5    Levin, B.R.6
  • 10
    • 4644343922 scopus 로고    scopus 로고
    • Bacterial persistence as a phenotypic switch
    • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622-1625. http://dx.doi.org/10.1126/science.1099390.
    • (2004) Science , vol.305 , pp. 1622-1625
    • Balaban, N.Q.1    Merrin, J.2    Chait, R.3    Kowalik, L.4    Leibler, S.5
  • 13
    • 81955167411 scopus 로고    scopus 로고
    • Persistence: Mechanisms for triggering and enhancing phenotypic variability
    • Balaban NQ. 2011. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21:768-775. http://dx.doi.org/10.1016/j.gde.2011.10.001.
    • (2011) Curr Opin Genet Dev , vol.21 , pp. 768-775
    • Balaban, N.Q.1
  • 14
    • 84880428168 scopus 로고    scopus 로고
    • A problem of persistence: Still more questions than answers?
    • Balaban NQ, Gerdes K, Lewis K, McKinney JD. 2013. A problem of persistence: still more questions than answers? Nat Rev Microbiol 11: 587-591. http://dx.doi.org/10.1038/nrmicro3076.
    • (2013) Nat Rev Microbiol , vol.11 , pp. 587-591
    • Balaban, N.Q.1    Gerdes, K.2    Lewis, K.3    McKinney, J.D.4
  • 15
    • 84878098314 scopus 로고    scopus 로고
    • Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response
    • Grant SS, Hung DT. 2013. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4:273-283. http://dx.doi.org/10.4161/viru.23987.
    • (2013) Virulence , vol.4 , pp. 273-283
    • Grant, S.S.1    Hung, D.T.2
  • 16
    • 84878204775 scopus 로고    scopus 로고
    • Metabolic control of persister formation in Escherichia coli
    • Amato SM, Orman MA, Brynildsen MP. 2013. Metabolic control of persister formation in Escherichia coli. Mol Cell 50:475-487. http://dx.doi.org/10.1016/j.molcel.2013.04.002.
    • (2013) Mol Cell , vol.50 , pp. 475-487
    • Amato, S.M.1    Orman, M.A.2    Brynildsen, M.P.3
  • 17
    • 84899505083 scopus 로고    scopus 로고
    • Molecular mechanisms underlying bacterial persisters
    • Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539-548. http://dx.doi.org/10.1016/ j.cell.2014.02.050.
    • (2014) Cell , vol.157 , pp. 539-548
    • Maisonneuve, E.1    Gerdes, K.2
  • 18
    • 84883342218 scopus 로고    scopus 로고
    • (P)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity
    • Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140-1150. http://dx.doi.org/10.1016/j.cell.2013.07.048.
    • (2013) Cell , vol.154 , pp. 1140-1150
    • Maisonneuve, E.1    Castro-Camargo, M.2    Gerdes, K.3
  • 20
    • 84879031775 scopus 로고    scopus 로고
    • Dormancy is not necessary or sufficient for bacterial persistence
    • Orman MA, Brynildsen MP. 2013. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57: 3230-3239. http://dx.doi.org/10.1128/AAC.00243-13.
    • (2013) Antimicrob Agents Chemother , vol.57 , pp. 3230-3239
    • Orman, M.A.1    Brynildsen, M.P.2
  • 21
    • 48749089081 scopus 로고    scopus 로고
    • Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli
    • Hansen S, Lewis K, Vulić M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718-2726. http://dx.doi.org/10.1128/AAC.00144-08.
    • (2008) Antimicrob Agents Chemother , vol.52 , pp. 2718-2726
    • Hansen, S.1    Lewis, K.2    Vulić, M.3
  • 22
    • 34250218203 scopus 로고    scopus 로고
    • PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli
    • Li Y, Zhang Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092-2099. http://dx.doi.org/10.1128/AAC.00052-07.
    • (2007) Antimicrob Agents Chemother , vol.51 , pp. 2092-2099
    • Li, Y.1    Zhang, Y.2
  • 23
    • 79960436674 scopus 로고    scopus 로고
    • Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence
    • Luidalepp H, Jõers A, Kaldalu N, Tenson T. 2011. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol 193:3598-3605. http://dx.doi.org/10.1128/JB.00085-11.
    • (2011) J Bacteriol , vol.193 , pp. 3598-3605
    • Luidalepp, H.1    Jõers, A.2    Kaldalu, N.3    Tenson, T.4
  • 24
    • 0033378852 scopus 로고    scopus 로고
    • High-dose intravenous fluoroquinolones in the treatment of severe infections
    • Modai J. 1999. High-dose intravenous fluoroquinolones in the treatment of severe infections. J Chemother 11:478-485. http://dx.doi.org/10.1179/joc.1999.11.6.478.
    • (1999) J Chemother , vol.11 , pp. 478-485
    • Modai, J.1
  • 25
    • 0031407768 scopus 로고    scopus 로고
    • DNA gyrase, topoisomerase IV, and the 4-quinolones
    • Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377-392.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 377-392
    • Drlica, K.1    Zhao, X.2
  • 26
    • 77952884274 scopus 로고    scopus 로고
    • How antibiotics kill bacteria: From targets to networks
    • Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423-435. http://dx.doi.org/10.1038/nrmicro2333.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 423-435
    • Kohanski, M.A.1    Dwyer, D.J.2    Collins, J.J.3
  • 27
    • 0022838933 scopus 로고
    • Antibacterial activity of ofloxacin and its mode of action
    • Sato K, Inoue Y, Fujii T, Aoyama H, Mitsuhashi S. 1986. Antibacterial activity of ofloxacin and its mode of action. Infection 14(Suppl 4): S226-S230. http://dx.doi.org/10.1007/BF01661277.
    • (1986) Infection , vol.14 , pp. S226-S230
    • Sato, K.1    Inoue, Y.2    Fujii, T.3    Aoyama, H.4    Mitsuhashi, S.5
  • 28
    • 74249107300 scopus 로고    scopus 로고
    • SOS response induces persistence to fluoroquinolones in Escherichia coli
    • Dörr T, Lewis K, Vulic´ M. 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760. http://dx.doi.org/10.1371/journal.pgen.1000760.
    • (2009) Plos Genet , vol.5
    • Dörr, T.1    Lewis, K.2    Vulic´, M.3
  • 29
    • 77649174212 scopus 로고    scopus 로고
    • Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli
    • Dörr T, Vulic´ M, Lewis K. 2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8:e1000317. http://dx.doi.org/10.1371/journal.pbio.1000317.
    • (2010) Plos Biol , vol.8
    • Dörr, T.1    Vulic´, M.2    Lewis, K.3
  • 30
    • 34249789279 scopus 로고    scopus 로고
    • Spontaneous DNA breakage in single living Escherichia coli cells
    • Pennington JM, Rosenberg SM. 2007. Spontaneous DNA breakage in single living Escherichia coli cells. Nat Genet 39:797-802. http://dx.doi.org/10.1038/ng2051.
    • (2007) Nat Genet , vol.39 , pp. 797-802
    • Pennington, J.M.1    Rosenberg, S.M.2
  • 31
    • 0346492817 scopus 로고    scopus 로고
    • Persister cells and tolerance to antimicrobials
    • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13-18. http://dx.doi.org/10.1016/S0378-1097(03)00856-5.
    • (2004) FEMS Microbiol Lett , vol.230 , pp. 13-18
    • Keren, I.1    Kaldalu, N.2    Spoering, A.3    Wang, Y.4    Lewis, K.5
  • 32
    • 43549091825 scopus 로고    scopus 로고
    • Cell division in Escherichia coli cultures monitored at single cell resolution
    • Roostalu J, Jõers A, Luidalepp H, Kaldalu N, Tenson T. 2008. Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68. http://dx.doi.org/10.1186/1471-2180-8-68.
    • (2008) BMC Microbiol , vol.8 , pp. 68
    • Roostalu, J.1    Jõers, A.2    Luidalepp, H.3    Kaldalu, N.4    Tenson, T.5
  • 33
    • 15944387317 scopus 로고    scopus 로고
    • The viable but nonculturable state in bacteria
    • Oliver JD. 2005. The viable but nonculturable state in bacteria. J Microbiol 43:93-100.
    • (2005) J Microbiol , vol.43 , pp. 93-100
    • Oliver, J.D.1
  • 34
    • 84882362714 scopus 로고    scopus 로고
    • Establishment of a method to rapidly assay bacterial persister metabolism
    • Orman MA, Brynildsen MP. 2013. Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother 57: 4398-4409. http://dx.doi.org/10.1128/AAC.00372-13.
    • (2013) Antimicrob Agents Chemother , vol.57 , pp. 4398-4409
    • Orman, M.A.1    Brynildsen, M.P.2
  • 35
    • 84924921744 scopus 로고    scopus 로고
    • SOS, the formidable strategy of bacteria against aggressions
    • Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126-1145. http://dx.doi.org/10.1111/1574-6976.12077.
    • (2014) FEMS Microbiol Rev , vol.38 , pp. 1126-1145
    • Baharoglu, Z.1    Mazel, D.2
  • 40
    • 0017601415 scopus 로고
    • A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways
    • Mount DW. 1977. A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways. Proc Natl Acad Sci U S A 74:300-304. http://dx.doi.org/10.1073/pnas.74.1.300.
    • (1977) Proc Natl Acad Sci U S A , vol.74 , pp. 300-304
    • Mount, D.W.1
  • 41
    • 0030905064 scopus 로고    scopus 로고
    • Sfi-independent filamentation in Escherichia coli is lexA dependent and requiresDNAdamage for induction
    • Hill TM, Sharma B, Valjavec-Gratian M, Smith J. 1997. sfi-independent filamentation in Escherichia coli is lexA dependent and requiresDNAdamage for induction. J Bacteriol 179:1931-1939.
    • (1997) J Bacteriol , vol.179 , pp. 1931-1939
    • Hill, T.M.1    Sharma, B.2    Valjavec-Gratian, M.3    Smith, J.4
  • 42
    • 0032477911 scopus 로고    scopus 로고
    • The 30-kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli
    • Yu M, Souaya J, Julin DA. 1998. The 30-kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli. Proc Natl Acad Sci U S A 95:981-986. http://dx.doi.org/10.1073/pnas.95.3.981.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 981-986
    • Yu, M.1    Souaya, J.2    Julin, D.A.3
  • 43
    • 0032491378 scopus 로고    scopus 로고
    • Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme
    • Yu M, Souaya J, Julin DA. 1998. Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme. J Mol Biol 283:797-808. http://dx.doi.org/10.1006/jmbi.1998.2127.
    • (1998) J Mol Biol , vol.283 , pp. 797-808
    • Yu, M.1    Souaya, J.2    Julin, D.A.3
  • 44
    • 0021970716 scopus 로고
    • Reconstitution of RecBC DNase activity from purified Escherichia coli RecB and RecC proteins
    • Hickson ID, Robson CN, Atkinson KE, Hutton L, Emmerson PT. 1985. Reconstitution of RecBC DNase activity from purified Escherichia coli RecB and RecC proteins. J Biol Chem 260:1224-1229.
    • (1985) J Biol Chem , vol.260 , pp. 1224-1229
    • Hickson, I.D.1    Robson, C.N.2    Atkinson, K.E.3    Hutton, L.4    Emmerson, P.T.5
  • 45
    • 0348047324 scopus 로고    scopus 로고
    • RecA-dependent recovery of arrested DNA replication forks
    • Courcelle J, Hanawalt PC. 2003. RecA-dependent recovery of arrested DNA replication forks. Annu Rev Genet 37:611-646. http://dx.doi.org/10.1146/annurev.genet.37.110801.142616.
    • (2003) Annu Rev Genet , vol.37 , pp. 611-646
    • Courcelle, J.1    Hanawalt, P.C.2
  • 46
    • 0028797220 scopus 로고
    • Altered SOS induction associated with mutations in recF, recO and recR
    • Whitby MC, Lloyd RG. 1995. Altered SOS induction associated with mutations in recF, recO and recR. Mol Gen Genet 246:174-179. http://dx.doi.org/10.1007/BF00294680.
    • (1995) Mol Gen Genet , vol.246 , pp. 174-179
    • Whitby, M.C.1    Lloyd, R.G.2
  • 47
    • 0022405375 scopus 로고
    • Identification of the Escherichia coli recN gene product as a major SOS protein
    • Finch PW, Finch PW, Chambers P, Emmerson PT. 1985. Identification of the Escherichia coli recN gene product as a major SOS protein. J Bacteriol 164:653-658.
    • (1985) J Bacteriol , vol.164 , pp. 653-658
    • Finch, P.W.1    Finch, P.W.2    Chambers, P.3    Emmerson, P.T.4
  • 48
    • 21244457233 scopus 로고    scopus 로고
    • RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks
    • Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG. 2005. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 57: 97-110. http://dx.doi.org/10.1111/j.1365-2958.2005.04677.x.
    • (2005) Mol Microbiol , vol.57 , pp. 97-110
    • Meddows, T.R.1    Savory, A.P.2    Grove, J.I.3    Moore, T.4    Lloyd, R.G.5
  • 49
    • 0024076249 scopus 로고
    • Structure and regulation of the Escherichia coli ruv operon involved in DNA repair and recombination
    • Shinagawa H, Makino K, Amemura M, Kimura S, Iwasaki H, Nakata A. 1988. Structure and regulation of the Escherichia coli ruv operon involved in DNA repair and recombination. J Bacteriol 170:4322-4329.
    • (1988) J Bacteriol , vol.170 , pp. 4322-4329
    • Shinagawa, H.1    Makino, K.2    Amemura, M.3    Kimura, S.4    Iwasaki, H.5    Nakata, A.6
  • 50
  • 52
    • 84865419909 scopus 로고    scopus 로고
    • Role of oxidative stress in persister tolerance
    • Wu Y, Vulic´ M, Keren I, Lewis K. 2012. Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother 56:4922-4926. http://dx.doi.org/10.1128/AAC.00921-12.
    • (2012) Antimicrob Agents Chemother , vol.56 , pp. 4922-4926
    • Wu, Y.1    Vulic´, M.2    Keren, I.3    Lewis, K.4
  • 55
    • 84888991522 scopus 로고    scopus 로고
    • Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway
    • Theodore A, Lewis K, Vulic M. 2013. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics 195:1265-1276. http://dx.doi.org/10.1534/genetics.113.152306.
    • (2013) Genetics , vol.195 , pp. 1265-1276
    • Theodore, A.1    Lewis, K.2    Vulic, M.3
  • 56
    • 0018384079 scopus 로고
    • DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid
    • Snyder M, Drlica K. 1979. DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J Mol Biol 131:287-302. http://dx.doi.org/10.1016/0022-2836(79)90077-9.
    • (1979) J Mol Biol , vol.131 , pp. 287-302
    • Snyder, M.1    Drlica, K.2
  • 57
    • 63849290890 scopus 로고    scopus 로고
    • Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy
    • Lu TK, Collins JJ. 2009. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106: 4629-4634. http://dx.doi.org/10.1073/pnas.0800442106.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 4629-4634
    • Lu, T.K.1    Collins, J.J.2
  • 58
    • 79955886933 scopus 로고    scopus 로고
    • Metabolite-enabled eradication of bacterial persisters by aminoglycosides
    • Allison KR, Brynildsen MP, Collins JJ. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216-220. http://dx.doi.org/10.1038/nature10069.
    • (2011) Nature , vol.473 , pp. 216-220
    • Allison, K.R.1    Brynildsen, M.P.2    Collins, J.J.3
  • 59
    • 10044266575 scopus 로고    scopus 로고
    • Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli
    • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172-8180. http://dx.doi.org/10.1128/JB.186.24.8172-8180.2004.
    • (2004) J Bacteriol , vol.186 , pp. 8172-8180
    • Keren, I.1    Shah, D.2    Spoering, A.3    Kaldalu, N.4    Lewis, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.