메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

BRANE Cut: Biologically-related a priori network enhancement with graph cuts for gene regulatory network inference

Author keywords

Discrete optimization; DREAM challenge; Gene expression data; Graph cuts; Network inference; Reverse engineering

Indexed keywords

COMPUTATIONAL EFFICIENCY; ESCHERICHIA COLI; GENE EXPRESSION; IMAGE SEGMENTATION; REVERSE ENGINEERING; STRUCTURAL OPTIMIZATION;

EID: 84946406582     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0754-2     Document Type: Article
Times cited : (15)

References (31)
  • 3
    • 84894345697 scopus 로고    scopus 로고
    • Reconstructing biological gene regulatory networks: where optimization meets big data
    • Thomas SA, Jin Y. Reconstructing biological gene regulatory networks: where optimization meets big data. Evol Intell. 2013; 7(1):29-47.
    • (2013) Evol Intell , vol.7 , Issue.1 , pp. 29-47
    • Thomas, S.A.1    Jin, Y.2
  • 4
    • 84871752758 scopus 로고    scopus 로고
    • NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference
    • Zhang X, Liu K, Liu ZP, Duval B, Richer JM, Zhao XM, et al.NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference. Bioinformatics. 2013; 29(1):106-13.
    • (2013) Bioinformatics , vol.29 , Issue.1 , pp. 106-113
    • Zhang, X.1    Liu, K.2    Liu, Z.P.3    Duval, B.4    Richer, J.M.5    Zhao, X.M.6
  • 5
    • 0000552986 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Hawaii, HI, USA
    • Butte AJ, Kohane IS. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. In: Pac. Symp. Biocomputing. vol. 5. Hawaii, HI, USA. p. 415-29.
    • Pac. Symp. Biocomputing. , vol.5 , pp. 415-429
    • Butte, A.J.1    Kohane, I.S.2
  • 6
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al.ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006; 7(Suppl. 1)(5):7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.5 , pp. 7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6
  • 8
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007; 5(1):54-66.
    • (2007) PLoS Biol. , vol.5 , Issue.1 , pp. 54-66
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6
  • 9
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Sinica. 2005;4(1).
    • (2005) Stat Sinica. , vol.4 , Issue.1
    • Schäfer, J.1    Strimmer, K.2
  • 10
    • 77249179159 scopus 로고    scopus 로고
    • Weighted-Lasso for structured network inference from time course data
    • Charbonnier C, Chiquet J, Ambroise C. Weighted-Lasso for structured network inference from time course data. Stat Appl Genet Mol Biol.2010;9(1).
    • (2010) Stat Appl Genet Mol Biol , vol.9 , Issue.1
    • Charbonnier, C.1    Chiquet, J.2    Ambroise, C.3
  • 11
    • 78650335757 scopus 로고    scopus 로고
    • Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate
    • Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol. 2010; 11(12):123.
    • (2010) Genome Biol. , vol.11 , Issue.12 , pp. 123
    • Krouk, G.1    Mirowski, P.2    LeCun, Y.3    Shasha, D.E.4    Coruzzi, G.M.5
  • 12
    • 84883771767 scopus 로고    scopus 로고
    • Network deconvolution as a general method to distinguish direct dependencies in networks
    • Feizi S, Marbach D, Médard M, Kellis M. Network deconvolution as a general method to distinguish direct dependencies in networks. Nat Biotechnol. 2013; 31(8):726-33.
    • (2013) Nat Biotechnol. , vol.31 , Issue.8 , pp. 726-733
    • Feizi, S.1    Marbach, D.2    Médard, M.3    Kellis, M.4
  • 13
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010; 5(9):1-10.
    • (2010) PLoS One , vol.5 , Issue.9 , pp. 1-10
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 14
    • 84929612020 scopus 로고    scopus 로고
    • Combining tree-based and dynamical systems for the inference of gene regulatory networks
    • Huynh-Thu VA, Sanguinetti G. Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics. 2015; 31(10):1614-1622.
    • (2015) Bioinformatics , vol.31 , Issue.10 , pp. 1614-1622
    • Huynh-Thu, V.A.1    Sanguinetti, G.2
  • 15
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: Data integration in dynamic models-a review. Biosystems. 2009; 96(1):86-103.
    • (2009) Biosystems , vol.96 , Issue.1 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 16
    • 34249656812 scopus 로고    scopus 로고
    • Minimizing nonsubmodular functions with graph cuts-a review
    • Kolmogorov V, Rother C. Minimizing nonsubmodular functions with graph cuts-a review. IEEE Trans Pattern Anal Mach Intell. 2007; 29(7):1274-9.
    • (2007) IEEE Trans Pattern Anal Mach Intell. , vol.29 , Issue.7 , pp. 1274-1279
    • Kolmogorov, V.1    Rother, C.2
  • 17
    • 84866362628 scopus 로고    scopus 로고
    • Multi-edge gene set networks reveal novel insights into global relationships between biological themes
    • Parikh JR, Xia Y, Marto JA. Multi-edge gene set networks reveal novel insights into global relationships between biological themes. PLoS One. 2012; 7(9):1-15.
    • (2012) PLoS One , vol.7 , Issue.9 , pp. 1-15
    • Parikh, J.R.1    Xia, Y.2    Marto, J.A.3
  • 20
    • 77950854888 scopus 로고    scopus 로고
    • Specialization can drive the evolution of modularity
    • Espinosa-Soto C, Wagner A. Specialization can drive the evolution of modularity. PLoS Comput Biol. 2010; 6(3):1000719.
    • (2010) PLoS Comput Biol , vol.6 , Issue.3 , pp. 1000719
    • Espinosa-Soto, C.1    Wagner, A.2
  • 21
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986; 8(6):679-98.
    • (1986) IEEE Trans Pattern Anal Mach Intell. , vol.8 , Issue.6 , pp. 679-698
    • Canny, J.1
  • 22
    • 84880211540 scopus 로고    scopus 로고
    • TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization
    • Ollion J, Cochennec J, Loll F, Escude C, Boudier T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics. 2013; 29(14):1840-1.
    • (2013) Bioinformatics , vol.29 , Issue.14 , pp. 1840-1841
    • Ollion, J.1    Cochennec, J.2    Loll, F.3    Escude, C.4    Boudier, T.5
  • 23
    • 0003531918 scopus 로고    scopus 로고
    • Robust Statistical Procedures, 2nd edn.
    • Philadelphia: Society for Industrial and Applied Mathematics;
    • Huber P. Robust Statistical Procedures, 2nd edn. Philadelphia: Society for Industrial and Applied Mathematics; 1996.
    • (1996)
    • Huber, P.1
  • 24
    • 0001261128 scopus 로고
    • Maximal flow through a network
    • Ford Jr LR, Fulkerson DR. Maximal flow through a network. Canad J Math. 1956; 8:399-404.
    • (1956) Canad J Math , vol.8 , pp. 399-404
    • Ford, L.R.1    Fulkerson, D.R.2
  • 26
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell. 2004; 26(9):1124-37.
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 28
    • 33644873438 scopus 로고    scopus 로고
    • RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions
    • Salgado H, Gama-Castro S, Peralta-Gil M, Díaz-Peredo E, Sánchez-Solano F, Santos-Zavaleta A, et al.RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 2006; 34(Database issue):394-7.
    • (2006) Nucleic Acids Res. , vol.34 , Issue.DATABASE ISSUE , pp. 394-397
    • Salgado, H.1    Gama-Castro, S.2    Peralta-Gil, M.3    Díaz-Peredo, E.4    Sánchez-Solano, F.5    Santos-Zavaleta, A.6
  • 29
    • 84876515907 scopus 로고    scopus 로고
    • String v9.1: protein-protein interaction networks, with increased coverage and integration
    • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al.String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013; 41(D1):808-15.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.D1 , pp. 808-815
    • Franceschini, A.1    Szklarczyk, D.2    Frankild, S.3    Kuhn, M.4    Simonovic, M.5    Roth, A.6
  • 31
    • 84873692197 scopus 로고    scopus 로고
    • Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery
    • Abu-Jamous B, Fa R, Roberts DJ, Nandi AK. Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery. PLoS One. 2013;8(2).
    • (2013) PLoS One , vol.8 , Issue.2
    • Abu-Jamous, B.1    Fa, R.2    Roberts, D.J.3    Nandi, A.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.