메뉴 건너뛰기




Volumn 8, Issue 2, 2013, Pages

Paradigm of Tunable Clustering Using Binarization of Consensus Partition Matrices (Bi-CoPaM) for Gene Discovery

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BINARIZATION OF CONSENSUS PARTITION MATRIX; CELL CYCLE; CLUSTER ANALYSIS; DNA MICROARRAY; FUNGAL GENE; FUZZY SYSTEM; GENE CLUSTER; GENE DISCOVERY; GENETIC ALGORITHM; GENETIC ANALYSIS; STATISTICAL CONCEPTS; VALIDITY;

EID: 84873692197     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0056432     Document Type: Article
Times cited : (44)

References (45)
  • 1
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons FD, Roth FP, (2002) Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research 12: 1574-1581.
    • (2002) Genome Research , vol.12 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 5
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the K-Means algorithm
    • Pena JM, Lozano JA, Larranaga P, (1999) An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognition Letters 20: 1027-1040.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 7
    • 0035250281 scopus 로고    scopus 로고
    • Self-organization of pulse-coupled oscillators with application to clustering
    • Rhouma MBH, Frigui H, (2001) Self-organization of pulse-coupled oscillators with application to clustering. IEEE Trans. Pattern Anal. Mach. Intell. 23: 1-16.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell , vol.23 , pp. 1-16
    • Rhouma, M.B.H.1    Frigui, H.2
  • 8
    • 43749090252 scopus 로고    scopus 로고
    • Investigation of self-organizing oscillator networks for use in clustering microarray data
    • Salem SA, Jack LB, Nandi AK, (2008) Investigation of self-organizing oscillator networks for use in clustering microarray data. IEEE Trans. Nanobioscience 7: 65-79.
    • (2008) IEEE Trans. Nanobioscience , vol.7 , pp. 65-79
    • Salem, S.A.1    Jack, L.B.2    Nandi, A.K.3
  • 9
    • 0032005769 scopus 로고    scopus 로고
    • Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis
    • Baumgartner R, Windischberger C, Moser E, (1998) Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. Magnetic Resonance Imaging 16: 115-125.
    • (1998) Magnetic Resonance Imaging , vol.16 , pp. 115-125
    • Baumgartner, R.1    Windischberger, C.2    Moser, E.3
  • 13
    • 50149108389 scopus 로고    scopus 로고
    • Ensemble clustering with voting active clusters
    • Tumer K, Agogino AK, (2008) Ensemble clustering with voting active clusters. Pattern Recognition Letters 29: 1947-1953.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1947-1953
    • Tumer, K.1    Agogino, A.K.2
  • 14
    • 75749158471 scopus 로고    scopus 로고
    • On voting-based consensus of cluster ensembles
    • Ayad HG, Kamel MS, (2010) On voting-based consensus of cluster ensembles. Pattern Recognition 43: 1943-1953.
    • (2010) Pattern Recognition , vol.43 , pp. 1943-1953
    • Ayad, H.G.1    Kamel, M.S.2
  • 16
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J, (2002) Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3: 583-617.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 18
    • 36448947175 scopus 로고    scopus 로고
    • Graph-based consensus clustering for class discovery from gene expression data
    • Yu Z, Wong HS, Wang H, (2007) Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 23: 2888-2896.
    • (2007) Bioinformatics , vol.23 , pp. 2888-2896
    • Yu, Z.1    Wong, H.S.2    Wang, H.3
  • 21
    • 80755189928 scopus 로고    scopus 로고
    • Weighted association based methods for the combination of heterogeneous partitions
    • Vega-Pons S, Ruiz-Shulcloper J, Guerra-Gandón A, (2011b) Weighted association based methods for the combination of heterogeneous partitions. Pattern Recognition Letters 32: 2163-2170.
    • (2011) Pattern Recognition Letters , vol.32 , pp. 2163-2170
    • Vega-Pons, S.1    Ruiz-Shulcloper, J.2    Guerra-Gandón, A.3
  • 23
    • 77956431446 scopus 로고    scopus 로고
    • An improved non-negative matrix factorization algorithm for combining multiple clusterings
    • Kaifeng, China
    • Wang W (2010) An improved non-negative matrix factorization algorithm for combining multiple clusterings. In 2010 International Conference on Machine Vision and Human-machine Interface; Kaifeng, China. 604-607.
    • (2010) 2010 International Conference on Machine Vision and Human-machine Interface , pp. 604-607
    • Wang, W.1
  • 24
    • 48249087654 scopus 로고    scopus 로고
    • Ensemble non-negative matrix factorization methods for clustering protein-protein interactions
    • Greene D, Cagney G, Krogan N, Cunningham P, (2008) Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics 24: 1722-1728.
    • (2008) Bioinformatics , vol.24 , pp. 1722-1728
    • Greene, D.1    Cagney, G.2    Krogan, N.3    Cunningham, P.4
  • 26
    • 17444368679 scopus 로고    scopus 로고
    • LS bound based gene selection for DNA microarray data
    • Zhou X, Mao KZ, (2005) LS bound based gene selection for DNA microarray data. Bioinformatics 21: 1559-1564.
    • (2005) Bioinformatics , vol.21 , pp. 1559-1564
    • Zhou, X.1    Mao, K.Z.2
  • 30
    • 80053257973 scopus 로고    scopus 로고
    • Dynamic physical resource block allocation algorithms for uplink long term evolution
    • Nwamadi O, Zhu X, Nandi AK, (2011) Dynamic physical resource block allocation algorithms for uplink long term evolution. IET Commun. 5: 1020-1027.
    • (2011) IET Commun , vol.5 , pp. 1020-1027
    • Nwamadi, O.1    Zhu, X.2    Nandi, A.K.3
  • 31
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data trasformations for gene expression data
    • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL, (2001) Model-based clustering and data trasformations for gene expression data. Bioinformatics 17: 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 32
    • 0035826942 scopus 로고    scopus 로고
    • Statistical modelling of large microarray data sets to identify stimulus-response profiles
    • Zhao LP, Presntice R, Breeden L, (2001) Statistical modelling of large microarray data sets to identify stimulus-response profiles. PNAS 98: 5631-5636.
    • (2001) PNAS , vol.98 , pp. 5631-5636
    • Zhao, L.P.1    Presntice, R.2    Breeden, L.3
  • 33
    • 2442609834 scopus 로고    scopus 로고
    • A random-periods model for expression of cell-cycle genes
    • Liu D, Umbach DM, Peddada SD, Li L, Crockett PW, et al. (2004) A random-periods model for expression of cell-cycle genes. PNAS 11: 7240-7245.
    • (2004) PNAS , vol.11 , pp. 7240-7245
    • Liu, D.1    Umbach, D.M.2    Peddada, S.D.3    Li, L.4    Crockett, P.W.5
  • 35
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization
    • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, et al. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9: 3273-3297.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5
  • 36
    • 33747379083 scopus 로고    scopus 로고
    • The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phasegap in the transcriptional circuitryof the cell cycle
    • Pramila T, Wu W, Miles S, Noble WS, Breeden LL, (2006) The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phasegap in the transcriptional circuitryof the cell cycle. Genes and Development 20: 2266-2278.
    • (2006) Genes and Development , vol.20 , pp. 2266-2278
    • Pramila, T.1    Wu, W.2    Miles, S.3    Noble, W.S.4    Breeden, L.L.5
  • 41
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • Dudoit S, Fridlyand J, (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19: 1090-1099.
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 43
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • Kuhn H (1955) The hungarian method for the assignment problem. Naval Research Logistics Quarterly 2.
    • (1955) Naval Research Logistics Quarterly , vol.2
    • Kuhn, H.1
  • 44
    • 0028800378 scopus 로고
    • CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells
    • Stuart D, Wittenberg C, (1995) CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes ad Development 9: 2780-2794.
    • (1995) Genes Ad Development , vol.9 , pp. 2780-2794
    • Stuart, D.1    Wittenberg, C.2
  • 45
    • 67849094731 scopus 로고    scopus 로고
    • Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis
    • Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, et al. (2009) Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis. Cell Metabolism 10: 119-130.
    • (2009) Cell Metabolism , vol.10 , pp. 119-130
    • Nilsson, R.1    Schultz, I.J.2    Pierce, E.L.3    Soltis, K.A.4    Naranuntarat, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.