-
1
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
Pisa, Italy: Academic Press
-
Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying support vector machines to imbalanced datasets. In Proceedings of the 2004 European conference on machine learning (pp. 39-50). Pisa, Italy: Academic Press.
-
(2004)
Proceedings of the 2004 European conference on machine learning
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
2
-
-
85025682511
-
MWMOTE: Majority weighted minority oversampling technique for imbalanced data set learning
-
Barua, S., Monirul Islam, M., Yao, X., & Murase, K. (2013). MWMOTE: Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
-
-
Barua, S.1
Monirul Islam, M.2
Yao, X.3
Murase, K.4
-
3
-
-
84874061590
-
Improved shrunken centroid classifiers for high-dimensional class-imbalanced data
-
PMID:23433084
-
Blagus, R. (2013). Improved shrunken centroid classifiers for high-dimensional class-imbalanced data. BMC Bioinformatics, 14(1), 64-76. doi:10.1186/1471-2105-14-64 PMID:23433084
-
(2013)
BMC Bioinformatics
, vol.14
, Issue.1
, pp. 64-76
-
-
Blagus, R.1
-
6
-
-
67449091641
-
AMPSO: A new particle swarm method for nearest neighborhood classification
-
PMID:19336325
-
Cervantes, A., Galván, O. M., & Isasi, P. (2009). AMPSO: A new particle swarm method for nearest neighborhood classification. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 39(5), 1082-1091. doi:10.1109/ TSMCB.2008.2011816 PMID:19336325
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics
, vol.39
, Issue.5
, pp. 1082-1091
-
-
Cervantes, A.1
Galván, O.M.2
Isasi, P.3
-
7
-
-
38149096116
-
Building fine bayesian networks aided by PSO-based feature selection
-
Academic Press
-
Chávez, M. C., Casas, G., Falcón, R., Moreira, J. E., & Grau, R. (2007). Building fine bayesian networks aided by PSO-based feature selection. In Proceedings of Advances in Artificial Intelligence (pp. 441-451). Academic Press. doi:10.1007/978-3-540-76631-5_42
-
(2007)
Proceedings of Advances in Artificial Intelligence
, pp. 441-451
-
-
Chávez, M.C.1
Casas, G.2
Falcón, R.3
Moreira, J.E.4
Grau, R.5
-
8
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
9
-
-
50549101751
-
Automatically countering imbalance and its empirical relationship to cost
-
Chawla, N. V., Cieslak, D. A., Hall, L. O., & Joshi, A. (2008). Automatically countering imbalance and its empirical relationship to cost. Data Mining and Knowledge Discovery, 17(2), 225-252. doi:10.1007/s10618-008-0087-0
-
(2008)
Data Mining and Knowledge Discovery
, vol.17
, Issue.2
, pp. 225-252
-
-
Chawla, N.V.1
Cieslak, D.A.2
Hall, L.O.3
Joshi, A.4
-
10
-
-
27144549260
-
Editorial: special issue on learning from imbalanced data sets
-
Chawla, N. V., Japkowicz, N., & Kolcz, A. (2004). Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations, 6(1), 1-6. doi:10.1145/1007730.1007733
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
11
-
-
9444297357
-
SMOTEBoost: Improving prediction of the minority class in boosting
-
Cavtat-Dubrovnik, Croatia: Academic Press
-
Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In Proceedings of the Seventh European conference Principles and Practice of Knowledge Discovery in Databases (pp. 107-119). Cavtat-Dubrovnik, Croatia: Academic Press.
-
(2003)
Proceedings of the Seventh European conference Principles and Practice of Knowledge Discovery in Databases
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
12
-
-
37349031558
-
Exploiting diversity in ensembles: Improving the performance on unbalanced datasets
-
Prague, Czech Republic:Academic Press
-
Chawla, N. V., & Sylvester, J. (2007). Exploiting diversity in ensembles: Improving the performance on unbalanced datasets. In Proceedings of the 7th International Workshop on Multiple Classifier Systems (pp. 397-406). Prague, Czech Republic:Academic Press.
-
(2007)
Proceedings of the 7th International Workshop on Multiple Classifier Systems
, pp. 397-406
-
-
Chawla, N.V.1
Sylvester, J.2
-
13
-
-
62449279596
-
A comparative study of data sampling and cost sensitive learning
-
Pisa, Italy: IEEE
-
Chris, S., Taghi, M. K., Jason, V. H., & Amri, N. (2008). A comparative study of data sampling and cost sensitive learning. In Proceedings of IEEE International Conference on Data Mining Workshops. Pisa, Italy: IEEE.
-
(2008)
Proceedings of IEEE International Conference on Data Mining Workshops
-
-
Chris, S.1
Taghi, M.K.2
Jason, V.H.3
Amri, N.4
-
14
-
-
84881072864
-
Eusboost: Enhancing Ensembles for Highly Imbalanced Data-sets by Evolutionary Undersampling
-
Galar, M., Fernández, A., Barrenechea, E., & Herrera, F. (2013). Eusboost: Enhancing Ensembles for Highly Imbalanced Data-sets by Evolutionary Undersampling. Pattern Recognition. doi:10.1016/j.patcog.2013.05.006
-
(2013)
Pattern Recognition
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Herrera, F.4
-
15
-
-
80052951934
-
A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems
-
Gao, M., Hong, X., Chen, S., & Harris, C. J. (2011). A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing, 74, 3456-3466. doi:10.1016/j. neucom.2011.06.010
-
(2011)
Neurocomputing
, vol.74
, pp. 3456-3466
-
-
Gao, M.1
Hong, X.2
Chen, S.3
Harris, C.J.4
-
16
-
-
28844454271
-
A comparison of particle swarm optimization and the genetic algorithm
-
Austin, TX: AIAA
-
Hassan, R., Cohanim, R., & De Weck, O. (2005). A comparison of particle swarm optimization and the genetic algorithm. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin, TX: AIAA.
-
(2005)
Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
-
-
Hassan, R.1
Cohanim, R.2
De Weck, O.3
-
17
-
-
68549133155
-
Learning from imbalanced data
-
He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. doi:10.1109/TKDE.2008.239
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
21
-
-
50249096788
-
A novel binary particle swarm optimization
-
Athens, Greece: Academic Press
-
Khanesar, M. A., Teshnehlab, M., & Shoorehdeli, M. A. (2007). A novel binary particle swarm optimization. In Proceedings of Mediterranean Conference on Control & Automation (pp. 1-6). Athens, Greece: Academic Press.
-
(2007)
Proceedings of Mediterranean Conference on Control & Automation
, pp. 1-6
-
-
Khanesar, M.A.1
Teshnehlab, M.2
Shoorehdeli, M.A.3
-
22
-
-
85031740255
-
Dealing with Severely Imbalanced Data
-
Bangkok, Thailand: PAKDD
-
Klement, W., Wilk, S., Michaowski, W., & Matwin, S. (2009). Dealing with Severely Imbalanced Data. In Proceedings of Workshop on Data Mining When Classes are Imbalanced and Errors Have Costs, PAKDD. Bangkok, Thailand: PAKDD.
-
(2009)
Proceedings of Workshop on Data Mining When Classes are Imbalanced and Errors Have Costs, PAKDD.
-
-
Klement, W.1
Wilk, S.2
Michaowski, W.3
Matwin, S.4
-
23
-
-
35348935140
-
Handling imbalanced datasets: A review
-
Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25-36.
-
(2006)
GESTS International Transactions on Computer Science and Engineering
, vol.30
, Issue.1
, pp. 25-36
-
-
Kotsiantis, S.1
Kanellopoulos, D.2
Pintelas, P.3
-
26
-
-
84885010138
-
Efficient Optimization of Performance Measures by Classifier Adaptation
-
PMID:22868653
-
Li, N., Tsang, I., & Zhou, Z. (2013). Efficient Optimization of Performance Measures by Classifier Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1370-1382. doi:10.1109/TPAMI.2012.172 PMID:22868653
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.6
, pp. 1370-1382
-
-
Li, N.1
Tsang, I.2
Zhou, Z.3
-
27
-
-
34247245110
-
Recent progress in computer-aided diagnosis of lung nodules on thin-section CT
-
PMID:17369020
-
Li, Q. (2007). Recent progress in computer-aided diagnosis of lung nodules on thin-section CT. Computerized Medical Imaging and Graphics, 31, 248-257. doi:10.1016/j.compmedimag.2007.02.005 PMID:17369020
-
(2007)
Computerized Medical Imaging and Graphics
, vol.31
, pp. 248-257
-
-
Li, Q.1
-
28
-
-
7044227562
-
AUC:A Statistical Consistent and More Discriminating Measure than Accuracy
-
Acapulco, Mexico:Academic Press
-
Ling, C. X., Huang, J., & Zhang, H. (2003). AUC:A Statistical Consistent and More Discriminating Measure than Accuracy. In Proceedings of the 18th International Conference on Artificial Intelligence (pp. 329-341). Acapulco, Mexico:Academic Press.
-
(2003)
Proceedings of the 18th International Conference on Artificial Intelligence
, pp. 329-341
-
-
Ling, C.X.1
Huang, J.2
Zhang, H.3
-
29
-
-
77949543086
-
Cost-sensitive learning and the class imbalance problem
-
Academic Press
-
Ling, C. X., & Sheng, V. S. (2008). Cost-sensitive learning and the class imbalance problem. In Encyclopedia of Machine Learning (pp. 231-235). Academic Press.
-
(2008)
Encyclopedia of Machine Learning
, pp. 231-235
-
-
Ling, C.X.1
Sheng, V.S.2
-
31
-
-
78650705743
-
Editorial Survey: Swarm Intelligence for Data Mining
-
Martens, D., Baesens, B., & Fawcett, T. (2011). Editorial Survey: Swarm Intelligence for Data Mining. Machine Learning, 82(1), 1-42. doi:10.1007/s10994-010-5216-5
-
(2011)
Machine Learning
, vol.82
, Issue.1
, pp. 1-42
-
-
Martens, D.1
Baesens, B.2
Fawcett, T.3
-
32
-
-
40649126091
-
Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
-
PMID:18272329
-
Mazurowski, M. A., Habas, P. A., Zurada, J. M., Lo, J. Y., Baker, J. A., & Tourassi, G. D. (2008). Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Networks, 21, 427-436. doi:10.1016/j.neunet.2007.12.031 PMID:18272329
-
(2008)
Neural Networks
, vol.21
, pp. 427-436
-
-
Mazurowski, M.A.1
Habas, P.A.2
Zurada, J.M.3
Lo, J.Y.4
Baker, J.A.5
Tourassi, G.D.6
-
33
-
-
78049276362
-
A PSO-based weighting method for linear combination of neural networks
-
Nabavi-Kerizi, S. H., Abadi, M., & Kabir, E. (2010). A PSO-based weighting method for linear combination of neural networks. Computers & Electrical Engineering, 36(5), 886-894. doi:10.1016/j.compeleceng.2008.04.006
-
(2010)
Computers & Electrical Engineering
, vol.36
, Issue.5
, pp. 886-894
-
-
Nabavi-Kerizi, S.H.1
Abadi, M.2
Kabir, E.3
-
34
-
-
84885370129
-
Mining medical images
-
Paris, France: ACM
-
Rao, R. B., Fung, G., Krishnapuram, B., Bi, J., Dundar, M., & Raykar, V.... Stoeckel, J. (2009). Mining medical images. In Proceedings of the Third Workshop on Data Mining Case Studies and Practice Prize, Fifteenth Annual SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009). Paris, France: ACM.
-
(2009)
Proceedings of the Third Workshop on Data Mining Case Studies and Practice Prize, Fifteenth Annual SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009)
-
-
Rao, R.B.1
Fung, G.2
Krishnapuram, B.3
Bi, J.4
Dundar, M.5
Raykar, V.6
Stoeckel, J.7
-
35
-
-
2642563714
-
Particle swarm based data mining algorithms for classification tasks
-
Sousa, T., Silva, A., & Neves, A. (2004). Particle swarm based data mining algorithms for classification tasks. Parallel Computing, 30(5-6), 767-783. doi:10.1016/j.parco.2003.12.015
-
(2004)
Parallel Computing
, vol.30
, Issue.5-6
, pp. 767-783
-
-
Sousa, T.1
Silva, A.2
Neves, A.3
-
36
-
-
80055040243
-
Towards maximizing the area under the ROC Curve for multi-class classification problems
-
San Francisco, CA:AAAI
-
Tang, K., Wang, R., & Chen, T. (2011). Towards maximizing the area under the ROC Curve for multi-class classification problems. In Proceedings of the 25th AAAI Conference on Artificial Intelligence (pp. 483-488). San Francisco, CA:AAAI.
-
(2011)
Proceedings of the 25th AAAI Conference on Artificial Intelligence
, pp. 483-488
-
-
Tang, K.1
Wang, R.2
Chen, T.3
-
37
-
-
77951173974
-
Feature selection with high dimensional imbalanced data
-
Miami, FL: IEEE
-
Van Hulse, J., Khoshgoftaar, T. M., Napolitano, A., & Wald, R. (2009). Feature selection with high dimensional imbalanced data. In Proceedings of the 9th IEEE International Conference on Data Mining Workshops (pp. 507-514). Miami, FL: IEEE.
-
(2009)
Proceedings of the 9th IEEE International Conference on Data Mining Workshops
, pp. 507-514
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Napolitano, A.3
Wald, R.4
-
38
-
-
0002648330
-
Controlling the sensitivity of support vector machines
-
Stockholm, Sweden: Academic Press
-
Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of support vector machines. In Proceedings of the international joint conference on artificial intelligence (pp. 55-60). Stockholm, Sweden: Academic Press.
-
(1999)
Proceedings of the international joint conference on artificial intelligence
, pp. 55-60
-
-
Veropoulos, K.1
Campbell, C.2
Cristianini, N.3
-
39
-
-
61449170039
-
Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs?
-
CSREA Press
-
Weiss, G., McCarthy, K., & Zabar, B. (2007). Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs? In Proceedings of the 2007 International Conference on Data Mining (pp. 35-41). CSREA Press.
-
(2007)
Proceedings of the 2007 International Conference on Data Mining
, pp. 35-41
-
-
Weiss, G.1
McCarthy, K.2
Zabar, B.3
-
40
-
-
33845501387
-
10 challenging problems in data mining research
-
Yang, Q., & Wu, X. (2006). 10 challenging problems in data mining research. International Journal of Information Technology & Decision Making, 5(4), 597-604. doi:10.1142/S0219622006002258
-
(2006)
International Journal of Information Technology & Decision Making
, vol.5
, Issue.4
, pp. 597-604
-
-
Yang, Q.1
Wu, X.2
-
41
-
-
44349093006
-
Learning from imbalanced data: a comparative study for colon CAD
-
Academic Press
-
Yang, X., Zheng, Y., Siddique, M., & Beddoe, G. (2008). Learning from imbalanced data: a comparative study for colon CAD. In Proceedings of the Medical Imaging (Vol. 6915). Academic Press.
-
(2008)
Proceedings of the Medical Imaging
, vol.6915
-
-
Yang, X.1
Zheng, Y.2
Siddique, M.3
Beddoe, G.4
-
42
-
-
84868621497
-
ACOSampling:An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data
-
Yu, H., Ni, J., & Zhao, J. (2013). ACOSampling:An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data. Neurocomputing, 101, 309-318. doi:10.1016/j.neucom.2012.08.018
-
(2013)
Neurocomputing
, vol.101
, pp. 309-318
-
-
Yu, H.1
Ni, J.2
Zhao, J.3
-
44
-
-
84865092880
-
Sampling + Reweighting:Boosting the Performance of AdaBoost on Imbalanced Datasets
-
Brisbane, Australia:Academic Press
-
Yuan, B., & Ma, X. (2012). Sampling + Reweighting:Boosting the Performance of AdaBoost on Imbalanced Datasets. In Proceedings of the 2012 International Joint Conference on Neural Networks (pp. 2680-2685). Brisbane, Australia:Academic Press.
-
(2012)
Proceedings of the 2012 International Joint Conference on Neural Networks
, pp. 2680-2685
-
-
Yuan, B.1
Ma, X.2
-
45
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations, 6(1), 80-89. doi:10.1145/1007730.1007741
-
(2004)
ACM SIGKDD Explorations
, vol.6
, Issue.1
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
46
-
-
31344442851
-
Training Cost-Sensitive Neural Networks with Methods Addressing the Class Imbalance Problem
-
Zhou, Z. H., & Liu, X. Y. (2006). Training Cost-Sensitive Neural Networks with Methods Addressing the Class Imbalance Problem. IEEE Transactions on Knowledge and Data Engineering, 18(1), 63-77. doi:10.1109/TKDE.2006.17
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.H.1
Liu, X.Y.2
|