메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 483-488

Towards maximizing the area under the ROC curve for multi-class classification problems

Author keywords

[No Author keywords available]

Indexed keywords

AREA UNDER THE ROC CURVE; BINARY CLASSIFICATION PROBLEMS; CLASS DISTRIBUTIONS; CLASSIFICATION SYSTEM; COST-SENSITIVE LEARNING; EMPIRICAL STUDIES; LEARNING PROBLEM; LEARNING TO RANK; MISCLASSIFICATION COSTS; MULTI-CLASS; MULTI-CLASS PROBLEMS; MULTICLASS CLASSIFICATION PROBLEMS; PERFORMANCE OF CLASSIFIER; RANKBOOST; SUB-PROBLEMS; TRAINING PROCESS;

EID: 80055040243     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (28)
  • 4
    • 14744290093 scopus 로고    scopus 로고
    • The hypervolume under the ROC hypersurface of "near-guessing" and "near-perfect" observers in N-class classification tasks
    • Edwards, D. C.; Metz, C. E.; and Nishikawa, R. M. 2005. The hypervolume under the ROC hypersurface of "near-guessing" and "near- perfect" observers in N-class classification tasks. IEEE transactions on medical imaging 24(3):293-239.
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.3 , pp. 293-1239
    • Edwards, D.C.1    Metz, C.E.2    Nishikawa, R.M.3
  • 6
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27:861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 7
    • 50549087357 scopus 로고    scopus 로고
    • PRIE: A system for generating rulelists to maximize ROC performance
    • Fawcett, T. 2008. PRIE: a system for generating rulelists to maximize ROC performance. Data Mining and Knowledge Discovery 17:207-224.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , pp. 207-224
    • Fawcett, T.1
  • 11
    • 0003562954 scopus 로고    scopus 로고
    • A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems
    • DOI 10.1023/A:1010920819831
    • Hand, D. J. 2001. A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45:171-186. (Pubitemid 33635984)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 15
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • DOI 10.1109/TKDE.2005.50
    • Huang, J., and Ling, C. X. 2005. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering 17(3):299-310. (Pubitemid 40320164)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 16
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., and Holte, R. 1998. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30(2-3):195-215.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.2
  • 18
    • 41749097006 scopus 로고    scopus 로고
    • Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis
    • DOI 10.1109/TPAMI.2007.70740
    • Landgrebe, T. C. W., and Duin, R. P. W. 2008. Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis. IEEE transactions on pattern analysis and machine intelligence 30(5):810-22. (Pubitemid 351486750)
    • (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.5 , pp. 810-822
    • Landgrebe, T.C.W.1    Duin, R.P.W.2
  • 21
    • 20444500972 scopus 로고    scopus 로고
    • A Bayesian MRF framework for labeling terrain using hyperspectral imaging
    • Neher, R., and Srivastava, a. 2005. A Bayesian MRF framework for labeling terrain using hyperspectral imaging. IEEE Transactions on Geoscience and Remote Sensing 43(6):1363-1374.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1363-1374
    • Neher, R.1    Srivastava, A.2
  • 22
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., and Domingos, P. 2003. Tree induction for probability-based ranking. Machine Learning 5:199-215.
    • (2003) Machine Learning , vol.5 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 23
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • DOI 10.1023/A:1007601015854
    • Provost, F., and Fawcett, T. 2001. Robust classification for imprecise environments. Machine Learning 42:203-231. (Pubitemid 32188799)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.