메뉴 건너뛰기




Volumn 4472 LNCS, Issue , 2007, Pages 397-406

Exploiting diversity in ensembles: improving the performance on unbalanced datasets

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; FUNCTION EVALUATION; GENETIC ALGORITHMS; LEARNING SYSTEMS;

EID: 37349031558     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-72523-7_40     Document Type: Conference Paper
Times cited : (41)

References (18)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • T. Dietterich, "Ensemble methods in machine learning," Lecture Notes in Computer Science, vol. 1857, pp. 1-15, 2000.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 4
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva and C. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Machine Learning, vol. 51, pp. 181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 7
    • 0346586663 scopus 로고    scopus 로고
    • N. Chawla, L. Hall, B. K.W., and W. Kegelmeyer, SMOTE: Synthetic Minority Oversampling TEchnique, Journal of Artificial Intelligence Research, 16, pp. 321-357, 2002.
    • N. Chawla, L. Hall, B. K.W., and W. Kegelmeyer, "SMOTE: Synthetic Minority Oversampling TEchnique," Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
  • 8
    • 0035283313 scopus 로고    scopus 로고
    • Robust Classification for Imprecise Environments
    • F. Provost and T. Fawcett, "Robust Classification for Imprecise Environments," Machine Learning, vol. 42/3, pp. 203-231, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 9
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based rankings
    • F. Provost and P. Domingos, "Tree induction for probability-based rankings," Machine Learning, vol. 52(3), 2003.
    • (2003) Machine Learning , vol.52 , Issue.3
    • Provost, F.1    Domingos, P.2
  • 10
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • D. Opitz, "Feature selection for ensembles," in AAAI/IAAI, pp. 379-384, 1999.
    • (1999) AAAI/IAAI , pp. 379-384
    • Opitz, D.1
  • 14
    • 0013371845 scopus 로고    scopus 로고
    • Evolving heterogeneous neural agents by local selection
    • V. Honavar, M. Patel, and K. Balakrishnan, eds, Cambridge, MA: MIT Press
    • F. Menczer, W. N. Street, and M. Degeratu, "Evolving heterogeneous neural agents by local selection," in Advances in the Evolutionary Synthesis of Neural Systems (V. Honavar, M. Patel, and K. Balakrishnan, eds.), Cambridge, MA: MIT Press, 2000.
    • (2000) Advances in the Evolutionary Synthesis of Neural Systems
    • Menczer, F.1    Street, W.N.2    Degeratu, M.3
  • 15
    • 0034315099 scopus 로고    scopus 로고
    • Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning, IEE Transactions on Evolutionary Computation, 4.4, pp. 380-387, 2000.
    • Y. Liu, X. Yao, and T. Higuchi, "Evolutionary ensembles with negative correlation learning," IEE Transactions on Evolutionary Computation, vol. 4.4, pp. 380-387, 2000.
  • 16
    • 0034314744 scopus 로고    scopus 로고
    • Designing classifier fusion systems by genetic algorithms
    • November
    • L. I. Kuncheva and L. C. Jain, "Designing classifier fusion systems by genetic algorithms," IEEE-EC, vol. 4, pp. 327-336, November 2000.
    • (2000) IEEE-EC , vol.4 , pp. 327-336
    • Kuncheva, L.I.1    Jain, L.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.