메뉴 건너뛰기




Volumn 11, Issue 6, 2010, Pages 489-494

Spectral Kurtosis against SVM for best frequency selection in bearing diagnostics

Author keywords

Bearing diagnostics; Frequency selection; Spectral Kurtosis (SK); Support Vector Machine (SVM)

Indexed keywords


EID: 79551718353     PISSN: 12962139     EISSN: 17652960     Source Type: Journal    
DOI: 10.1051/meca/2010056     Document Type: Conference Paper
Times cited : (6)

References (9)
  • 1
    • 27744553270 scopus 로고    scopus 로고
    • The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines
    • DOI 10.1016/j.ymssp.2004.09.002, PII S0888327004001529
    • J. Antoni, R.B. Randall, The Spectral Kurtosis: appli-cation to the vibratory surveillance and diagnostics of rotating machines, Mech. Syst. Signal Process. 20 (2006) 308-331 (Pubitemid 41606171)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.2 , pp. 308-331
    • Antoni, J.1    Randall, R.B.2
  • 2
    • 27744587461 scopus 로고    scopus 로고
    • The spectral kurtosis: A useful tool for characterising non-stationary signals
    • DOI 10.1016/j.ymssp.2004.09.001, PII S0888327004001517
    • J. Antoni, The spectral kurtosis: a useful tool for characterising nonstationary signals, Mech. Syst. Signal Process. 20 (2006) 282-307 (Pubitemid 41606170)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.2 , pp. 282-307
    • Antoni, J.1
  • 3
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo, B. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mech. Syst. Signal Process. 21 (2006) 2560-2574
    • (2006) Mech. Syst. Signal Process. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.2
  • 4
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • DOI 10.1006/mssp.2001.1454
    • L.B. Jack, A.K. Nandi, Fault detection using support vec-tor machines and artificial neural network, augmented by genetic algorithms, Mech. Syst. Signal Process. 16 (2002) 373-390 (Pubitemid 40000347)
    • (2002) Mechanical Systems and Signal Processing , vol.16 , Issue.2-3 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 5
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural network and support vector machine with genetic algorithm for bearing fault detection
    • B. Samanta, K.R. Al-Balushi, S.A. Al-Araimi, Artificial neural network and support vector machine with genetic algorithm for bearing fault detection, Eng. Appl. Artif Intell. 16 (2003) 657-665
    • (2003) Eng. Appl. Artif Intell. , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 6
    • 33749057295 scopus 로고    scopus 로고
    • Detection and classification of rolling-element bearing faults using support vector machines
    • DOI 10.1109/MLSP.2005.1532891, 1532891, 2005 IEEE Workshop on Machine Learning for Signal Processing
    • A. Rojas, K. Nandi, Detection and classification of rolling-element bearing faults using support vector ma-chines, IEEE Workshop on Machine Learning for Signal Processing 12 (2005) 153-158 (Pubitemid 44461997)
    • (2005) 2005 IEEE Workshop on Machine Learning for Signal Processing , pp. 153-158
    • Rojas, A.1    Nandi, A.K.2
  • 7
    • 84876682126 scopus 로고    scopus 로고
    • Fast Computation of the Kurtogram for the Detection ofTransient Faults
    • in press
    • J. Antoni, Fast Computation of the Kurtogram for the Detection ofTransient Faults, Mech. Syst. Signal Process, in press
    • Mech. Syst. Signal Process
    • Antoni, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.