메뉴 건너뛰기




Volumn 179, Issue 12, 2009, Pages 1970-1983

A hybrid coevolutionary algorithm for designing fuzzy classifiers

Author keywords

Classification; Coevolutionary algorithm; Fuzzy rule set; Hybrid algorithms; Niching scheme

Indexed keywords

CIRCUIT THEORY; CLASSIFIERS; EVOLUTIONARY ALGORITHMS; FUZZY RULES; FUZZY SYSTEMS; INFORMATION MANAGEMENT; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 63149186316     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2009.01.045     Document Type: Article
Times cited : (36)

References (65)
  • 1
  • 2
    • 0036435523 scopus 로고    scopus 로고
    • Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization
    • Abonyi J., Roubos J.A., and Szeifert F. Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning 32 1 (2003) 1-21
    • (2003) International Journal of Approximate Reasoning , vol.32 , Issue.1 , pp. 1-21
    • Abonyi, J.1    Roubos, J.A.2    Szeifert, F.3
  • 3
    • 33751166396 scopus 로고    scopus 로고
    • Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation
    • Alcal R., et al. Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation. International Journal of Approximate Reasoning 44 1 (2007) 45-64
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 45-64
    • Alcal, R.1
  • 6
    • 58049217458 scopus 로고    scopus 로고
    • Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index
    • Botta A., et al. Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Computing - A Fusion of Foundations, Methodologies and Applications 13 5 (2009) 437-449
    • (2009) Soft Computing - A Fusion of Foundations, Methodologies and Applications , vol.13 , Issue.5 , pp. 437-449
    • Botta, A.1
  • 8
    • 1242263791 scopus 로고    scopus 로고
    • A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
    • Chakraborty D., and Pal N.R. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Transactions on Neural Networks 15 1 (2004) 110-123
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 11
    • 0346781553 scopus 로고    scopus 로고
    • Ten years of genetic fuzzy systems: current framework and new trends
    • Cordón O., et al. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141 1 (2004) 5-31
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 5-31
    • Cordón, O.1
  • 12
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • De Jong K.A., Spears W.M., and Gordon D.F. Using genetic algorithms for concept learning. Machine Learning 13 2 (1993) 161-188
    • (1993) Machine Learning , vol.13 , Issue.2 , pp. 161-188
    • De Jong, K.A.1    Spears, W.M.2    Gordon, D.F.3
  • 13
    • 3042555856 scopus 로고    scopus 로고
    • Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms
    • del Jesus M.J., et al. Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms. IEEE Transactions on Fuzzy Systems 12 3 (2004) 296-308
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , Issue.3 , pp. 296-308
    • del Jesus, M.J.1
  • 14
    • 21144455844 scopus 로고    scopus 로고
    • Ph.D. thesis, Department of Computer Science, Vrije University, Amsterdam, The Netherlands
    • F. Divina, Hybrid genetic relational search for inductive learning. Ph.D. thesis, Department of Computer Science, Vrije University, Amsterdam, The Netherlands, 2004.
    • (2004) Hybrid genetic relational search for inductive learning
    • Divina, F.1
  • 16
    • 63149124973 scopus 로고    scopus 로고
    • Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization
    • Evsukoff A.G., et al. Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization. Fuzzy Sets and Systems (2008)
    • (2008) Fuzzy Sets and Systems
    • Evsukoff, A.G.1
  • 17
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad U., and Irani K. On the handling of continuous-valued attributes in decision tree generation. Machine Learning 8 (1992) 87-102
    • (1992) Machine Learning , vol.8 , pp. 87-102
    • Fayyad, U.1    Irani, K.2
  • 19
    • 0035426324 scopus 로고    scopus 로고
    • Approximative fuzzy rules approaches for classification with hybrid-GA techniques
    • Gómez-Skarmeta A.F., et al. Approximative fuzzy rules approaches for classification with hybrid-GA techniques. Information Sciences 136 1-4 (2001) 193-214
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 193-214
    • Gómez-Skarmeta, A.F.1
  • 20
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: a genetic learning system based on an iterative approach
    • Gonzblez A., and Perez R. SLAVE: a genetic learning system based on an iterative approach. IEEE Transactions on Fuzzy Systems 7 2 (1999) 176-191
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.2 , pp. 176-191
    • Gonzblez, A.1    Perez, R.2
  • 21
    • 0032136585 scopus 로고    scopus 로고
    • Tackling real-coded genetic algorithms: operators and tools for behavioural analysis
    • Herrera F., and Lozano M. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artificial Intelligence Review 12 4 (1998) 265-319
    • (1998) Artificial Intelligence Review , vol.12 , Issue.4 , pp. 265-319
    • Herrera, F.1    Lozano, M.2
  • 22
    • 33750483917 scopus 로고    scopus 로고
    • Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms
    • Hoffmann F., et al. Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. European Journal of Operational Research 177 1 (2007) 540-555
    • (2007) European Journal of Operational Research , vol.177 , Issue.1 , pp. 540-555
    • Hoffmann, F.1
  • 24
    • 34547801710 scopus 로고    scopus 로고
    • A high performance edge detector based on fuzzy inference rules
    • Hu L., Cheng H.D., and Zhang M. A high performance edge detector based on fuzzy inference rules. Information Sciences 177 21 (2007) 4768-4784
    • (2007) Information Sciences , vol.177 , Issue.21 , pp. 4768-4784
    • Hu, L.1    Cheng, H.D.2    Zhang, M.3
  • 25
    • 22144437737 scopus 로고    scopus 로고
    • Finding useful fuzzy concepts for pattern classification using genetic algorithm
    • Hu Y.-C. Finding useful fuzzy concepts for pattern classification using genetic algorithm. Information Sciences 175 1-2 (2005) 1-19
    • (2005) Information Sciences , vol.175 , Issue.1-2 , pp. 1-19
    • Hu, Y.-C.1
  • 26
    • 26944491093 scopus 로고    scopus 로고
    • Fuzzy methods in machine learning and data mining: status and prospects
    • Hüllermeier E. Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets and Systems 156 3 (2005) 387-406
    • (2005) Fuzzy Sets and Systems , vol.156 , Issue.3 , pp. 387-406
    • Hüllermeier, E.1
  • 27
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi H., Nozaki K., and Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and Systems 52 1 (1992) 21-32
    • (1992) Fuzzy Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 28
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • Ishibuchi H., Nakashima T., and Murata T. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B 29 5 (1999) 601-618
    • (1999) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.29 , Issue.5 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 29
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • Ishibuchi H., Nakashima T., and Murata T. Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences 136 1-4 (2001) 109-133
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 33
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi H., and Nojima Y. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning 44 1 (2007) 4-31
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 35
    • 33749382626 scopus 로고    scopus 로고
    • Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    • Kim M.S., Kim C.H., and Lee J.J. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part B 36 5 (2006) 1006-1023
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.36 , Issue.5 , pp. 1006-1023
    • Kim, M.S.1    Kim, C.H.2    Lee, J.J.3
  • 37
    • 33749653276 scopus 로고    scopus 로고
    • A self-constructing fuzzy CMAC model and its applications
    • Lee C.-Y., Lin C.-J., and Chen H.-J. A self-constructing fuzzy CMAC model and its applications. Information Sciences 177 1 (2007) 264-280
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 264-280
    • Lee, C.-Y.1    Lin, C.-J.2    Chen, H.-J.3
  • 38
    • 26844536624 scopus 로고    scopus 로고
    • A novel type of niching methods based on steady-state genetic algorithm
    • Li M., and Kou J. A novel type of niching methods based on steady-state genetic algorithm. Advances in Natural Computation (2005) 37-47
    • (2005) Advances in Natural Computation , pp. 37-47
    • Li, M.1    Kou, J.2
  • 39
    • 42149178705 scopus 로고    scopus 로고
    • Crowding with nearest neighbors replacement for multiple species niching and building blocks preservation in binary multimodal functions optimization
    • Li M., and Kou J. Crowding with nearest neighbors replacement for multiple species niching and building blocks preservation in binary multimodal functions optimization. Journal of Heuristics 14 3 (2008) 243-270
    • (2008) Journal of Heuristics , vol.14 , Issue.3 , pp. 243-270
    • Li, M.1    Kou, J.2
  • 40
    • 0026366218 scopus 로고
    • Neural network-based fuzzy logic control and decision system
    • Lin C.T., and Lee C.S.G. Neural network-based fuzzy logic control and decision system. IEEE Transactions on Computers 40 12 (1991) 1320-1336
    • (1991) IEEE Transactions on Computers , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 41
    • 33846238469 scopus 로고    scopus 로고
    • A weighting function for improving fuzzy classification systems performance
    • Mansoori E.G., Zolghadri M.J., and Katebi S.D. A weighting function for improving fuzzy classification systems performance. Fuzzy Sets and Systems 158 5 (2007) 583-591
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.5 , pp. 583-591
    • Mansoori, E.G.1    Zolghadri, M.J.2    Katebi, S.D.3
  • 42
    • 50549085684 scopus 로고    scopus 로고
    • SGERD: a steady-state genetic algorithm for extracting fuzzy classification rules from data
    • Mansoori E.G., Zolghadri M.J., and Katebi S.D. SGERD: a steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Transactions on Fuzzy Systems 16 4 (2008) 1061-1071
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.4 , pp. 1061-1071
    • Mansoori, E.G.1    Zolghadri, M.J.2    Katebi, S.D.3
  • 45
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems
    • Mikut R., Jakel J., and Groll L. Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets and Systems 150 2 (2005) 179-197
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 179-197
    • Mikut, R.1    Jakel, J.2    Groll, L.3
  • 46
    • 0000672424 scopus 로고
    • Fast learning in network of locally tuned processing units
    • Moody J., and Darken C.J. Fast learning in network of locally tuned processing units. Neural Computation 1 2 (1989) 281-294
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 47
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Nauck D., and Kruse R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems 89 3 (1997) 277-288
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 48
    • 33846816451 scopus 로고    scopus 로고
    • Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods
    • Pulkkinen P., and Koivisto H. Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods. Applied Soft Computing 7 2 (2007) 520-533
    • (2007) Applied Soft Computing , vol.7 , Issue.2 , pp. 520-533
    • Pulkkinen, P.1    Koivisto, H.2
  • 51
    • 0000670186 scopus 로고
    • Equivalence class analysis of genetic algorithms
    • Radcliffe N.J. Equivalence class analysis of genetic algorithms. Complex Systems 5 2 (1991) 183-205
    • (1991) Complex Systems , vol.5 , Issue.2 , pp. 183-205
    • Radcliffe, N.J.1
  • 52
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Roubos H., and Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Transactions on Fuzzy Systems 9 4 (2001) 516-524
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 53
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • Roubos J.A., Setnes M., and Abonyi J. Learning fuzzy classification rules from labeled data. Information Sciences 150 1-2 (2003) 77-93
    • (2003) Information Sciences , vol.150 , Issue.1-2 , pp. 77-93
    • Roubos, J.A.1    Setnes, M.2    Abonyi, J.3
  • 54
    • 0035426475 scopus 로고    scopus 로고
    • Combining GP operators with SA search to evolve fuzzy rule based classifiers
    • Sanchez L., Couso I., and Corrales J.A. Combining GP operators with SA search to evolve fuzzy rule based classifiers. Information Sciences 136 1-4 (2001) 175-191
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 175-191
    • Sanchez, L.1    Couso, I.2    Corrales, J.A.3
  • 56
    • 22044453848 scopus 로고    scopus 로고
    • On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems
    • Setzkorn C., and Paton R.C. On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems. Biosystems 81 2 (2005) 101-112
    • (2005) Biosystems , vol.81 , Issue.2 , pp. 101-112
    • Setzkorn, C.1    Paton, R.C.2
  • 57
    • 1842587806 scopus 로고    scopus 로고
    • Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space
    • Shinn-Ying H., et al. Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34 2 (2004) 1031-1044
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.34 , Issue.2 , pp. 1031-1044
    • Shinn-Ying, H.1
  • 60
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • Wang H., et al. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149 1 (2005) 149-186
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1
  • 63
    • 38649114684 scopus 로고    scopus 로고
    • Designing of classifiers based on immune principles and fuzzy rules
    • Zhang L., and Li R.-h. Designing of classifiers based on immune principles and fuzzy rules. Information Sciences 178 7 (2008) 1836-1847
    • (2008) Information Sciences , vol.178 , Issue.7 , pp. 1836-1847
    • Zhang, L.1    Li, R.-h.2
  • 64
    • 34547681970 scopus 로고    scopus 로고
    • Fuzzy classifier design using genetic algorithms
    • Zhou E., and Khotanzad A. Fuzzy classifier design using genetic algorithms. Pattern Recognition 40 12 (2007) 3401-3414
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3401-3414
    • Zhou, E.1    Khotanzad, A.2
  • 65
    • 33947267482 scopus 로고    scopus 로고
    • Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis
    • Zolghadri M.J., and Mansoori E.G. Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis. Information Sciences 177 11 (2007) 2296-2307
    • (2007) Information Sciences , vol.177 , Issue.11 , pp. 2296-2307
    • Zolghadri, M.J.1    Mansoori, E.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.