-
3
-
-
80053330652
-
Recent advances and trends in visual tracking: A review
-
Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)
-
(2011)
Neurocomputing
, vol.74
, Issue.18
, pp. 3823-3831
-
-
Yang, H.1
Shao, L.2
Zheng, F.3
Wang, L.4
Song, Z.5
-
4
-
-
84903121415
-
Visual tracking: An experimental survey
-
Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.36
, Issue.7
, pp. 1442-1468
-
-
Smeulders, A.1
Chu, D.2
Cucchiara, R.3
Calderara, S.4
Dehghan, A.5
Shah, M.6
-
6
-
-
84904482223
-
-
arXiv preprint arXiv:1310.1531
-
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition (2013).
-
(2013)
Darrell, T.: Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition (2013). Arxiv Preprint Arxiv
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
-
7
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Hinton, G.E., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29(6), 82–97 (2012)
-
(2012)
IEEE Signal Process. Mag
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.E.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
8
-
-
84922343800
-
Deep convolutional neural networks for large-scale speech tasks
-
Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.R., Dahl, G., Ramabhadran, B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)
-
(2015)
Neural Netw
, vol.64
, pp. 39-48
-
-
Sainath, T.N.1
Kingsbury, B.2
Saon, G.3
Soltau, H.4
Mohamed, A.R.5
Dahl, G.6
Ramabhadran, B.7
-
10
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: International Conference on Machine Learning (ICML) (2009)
-
(2009)
International Conference on Machine Learning (ICML)
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
11
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
14
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
16
-
-
54749092170
-
80 Million tiny images: A large data set for nonparametric object and scene recognition
-
Torralba, A., Fergus, R., Freeman, W.T.: 80 Million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.11
, pp. 1958-1970
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.T.3
-
17
-
-
84906351367
-
Analyzing the performance of multilayer neural networks for object recognition
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 329–344. Springer, Heidelberg (2014)
-
(2014)
ECCV 2014, Part VII. LNCS
, vol.8695
, pp. 329-344
-
-
Agrawal, P.1
Girshick, R.2
Malik, J.3
-
18
-
-
0002263996
-
Convolutional networks for images, speech, and time-series
-
Arbib, M.A. (ed.), MIT Press, Cambridge
-
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)
-
(1995)
Handbook of Brain Theory and Neural Networks
-
-
Lecun, Y.1
Bengio, Y.2
-
20
-
-
0003665481
-
-
Springer, New York
-
Doucet, A., Freitas, D.N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Doucet, A.1
Freitas, D.N.2
Gordon, N.3
-
21
-
-
0036475447
-
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
-
Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)
-
(2002)
IEEE Trans. Sig. Process
, vol.50
, Issue.2
, pp. 174-188
-
-
Arulampalam, M.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
22
-
-
84861312439
-
Tracking-learning-detection
-
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.34
, Issue.7
, pp. 1409-1422
-
-
Kalal, Z.1
Mikolajczyk, K.2
Matas, J.3
-
23
-
-
79959527478
-
Robust object tracking with online multiple instance learning
-
Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.33
, Issue.8
, pp. 1619-1632
-
-
Babenko, B.1
Yang, M.2
Belongie, S.3
-
24
-
-
39749173057
-
Incremental learning for robust visual tracking
-
Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
-
(2008)
Int. J. Comput. Vis
, vol.77
, Issue.1
, pp. 125-141
-
-
Ross, D.1
Lim, J.2
Lin, R.3
Yang, M.4
-
25
-
-
84867872820
-
Real-time compressive tracking
-
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
-
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
-
(2012)
ECCV 2012, Part III. LNCS
, vol.7574
, pp. 864-877
-
-
Zhang, K.1
Zhang, L.2
Yang, M.-H.3
-
27
-
-
84920106320
-
Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images
-
Brosch, T., Tam, R.: Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images. Neural Comput. 27(1), 211–227 (2015)
-
(2015)
Neural Comput
, vol.27
, Issue.1
, pp. 211-227
-
-
Brosch, T.1
Tam, R.2
|