메뉴 건너뛰기




Volumn 9231, Issue , 2015, Pages 103-115

Visual tracking based on convolutional deep belief network

Author keywords

Convolutional deep belief network; Deep learning; GPU; Visual tracking

Indexed keywords

COMPUTER GRAPHICS; COMPUTER GRAPHICS EQUIPMENT; COMPUTER VISION; PROGRAM PROCESSORS; TRACKING (POSITION);

EID: 84944673229     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-23216-4_8     Document Type: Conference Paper
Times cited : (3)

References (27)
  • 3
    • 80053330652 scopus 로고    scopus 로고
    • Recent advances and trends in visual tracking: A review
    • Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3823-3831
    • Yang, H.1    Shao, L.2    Zheng, F.3    Wang, L.4    Song, Z.5
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 14
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 16
    • 54749092170 scopus 로고    scopus 로고
    • 80 Million tiny images: A large data set for nonparametric object and scene recognition
    • Torralba, A., Fergus, R., Freeman, W.T.: 80 Million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 17
    • 84906351367 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 329–344. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part VII. LNCS , vol.8695 , pp. 329-344
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 18
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time-series
    • Arbib, M.A. (ed.), MIT Press, Cambridge
    • LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)
    • (1995) Handbook of Brain Theory and Neural Networks
    • Lecun, Y.1    Bengio, Y.2
  • 21
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)
    • (2002) IEEE Trans. Sig. Process , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 23
    • 79959527478 scopus 로고    scopus 로고
    • Robust object tracking with online multiple instance learning
    • Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1619-1632
    • Babenko, B.1    Yang, M.2    Belongie, S.3
  • 24
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
    • (2008) Int. J. Comput. Vis , vol.77 , Issue.1 , pp. 125-141
    • Ross, D.1    Lim, J.2    Lin, R.3    Yang, M.4
  • 25
    • 84867872820 scopus 로고    scopus 로고
    • Real-time compressive tracking
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
    • (2012) ECCV 2012, Part III. LNCS , vol.7574 , pp. 864-877
    • Zhang, K.1    Zhang, L.2    Yang, M.-H.3
  • 27
    • 84920106320 scopus 로고    scopus 로고
    • Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images
    • Brosch, T., Tam, R.: Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images. Neural Comput. 27(1), 211–227 (2015)
    • (2015) Neural Comput , vol.27 , Issue.1 , pp. 211-227
    • Brosch, T.1    Tam, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.