메뉴 건너뛰기




Volumn , Issue , 2015, Pages 215-243

Nonnegative matrix factorization for interactive topic modeling and document clustering

Author keywords

Block coordinate descent; Document clustering; Interactive visual analytics; Nonnegative matrix factorization; Topic modeling

Indexed keywords

CLUSTER ANALYSIS; FACTORIZATION; INFORMATION RETRIEVAL; VISUALIZATION;

EID: 84944595142     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-319-09259-1_7     Document Type: Chapter
Times cited : (119)

References (52)
  • 6
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet J-P., Tamayo P., Golub T. R., Mesirov J. P. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101 (12):4164-4169.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.12 , pp. 4164-4169
    • Brunet, J.-P.1    Tamayo, P.2    Golub, T.R.3    Mesirov, J.P.4
  • 7
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Cai D., He X., Han J., Huang T. S. (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33 (8):1548-1560.
    • (2011) IEEE Trans Pattern Anal Mach Intell , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 8
    • 84880820335 scopus 로고    scopus 로고
    • Customizing computational methods for visual analytics with big data
    • Choo J., Park H. (2013) Customizing computational methods for visual analytics with big data. IEEE Comput Graph Appl 33 (4):22-28.
    • (2013) IEEE Comput Graph Appl , vol.33 , Issue.4 , pp. 22-28
    • Choo, J.1    Park, H.2
  • 9
    • 84886684025 scopus 로고    scopus 로고
    • Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization
    • Choo J., Lee C., Reddy C. K., Park H. (2013) UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Trans Vis Comput Graph 19 (12):1992-2001.
    • (2013) IEEE Trans Vis Comput Graph , vol.19 , Issue.12 , pp. 1992-2001
    • Choo, J.1    Lee, C.2    Reddy, C.K.3    Park, H.4
  • 11
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • e1000029
    • Devarajan K. (2008) Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol 4 (7):e1000029.
    • (2008) Plos Comput Biol , vol.4 , Issue.7
    • Devarajan, K.1
  • 14
    • 67049146331 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding
    • Ding C., Li T., Jordan M. (2008) Nonnegative matrix factorization for combinatorial optimization: spectral clustering, graph matching, and clique finding. In: Proceedings of the 8th IEEE international conference on data mining (ICDM), pp 183-192.
    • (2008) Proceedings of the 8Th IEEE International Conference on Data Mining (ICDM) , pp. 183-192
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 19
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear gauss-seidel method under convex constraints
    • Grippo L., Sciandrone M. (2000) On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper Res Lett 26:127-136.
    • (2000) Oper Res Lett , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 21
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P. O. (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5:1457-1469.
    • (2004) J Mach Learn Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 22
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H., Park H. (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23 (12):1495-1502.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 23
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method
    • Kim H., Park H. (2008) Nonnegative matrix factorization based on alternating non-negativity-constrained least squares and the active set method. SIAM J Matrix Anal Appl 30 (2):713-730.
    • (2008) SIAM J Matrix Anal Appl , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 25
    • 84895057098 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework
    • Kim J., He Y., Park H. (2014) Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework. J Global Optim 58 (2):285-319.
    • (2014) J Global Optim , vol.58 , Issue.2 , pp. 285-319
    • Kim, J.1    He, Y.2    Park, H.3
  • 28
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization: An active-set-like method and comparisons
    • Kim J., Park H. (2011) Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM J Sci Comput 33 (6):3261-3281.
    • (2011) SIAM J Sci Comput , vol.33 , Issue.6 , pp. 3261-3281
    • Kim, J.1    Park, H.2
  • 31
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • Kuhn H. W. (1955) The Hungarian method for the assignment problem. Nav Res Logistics Q 2:83-97.
    • (1955) Nav Res Logistics Q , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 33
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D. D., Seung H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 35
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization research
    • Lewis D. D., Yang Y., Rose T. G., Li F. (2004) Rcv1: a new benchmark collection for text categorization research. J Mach Learn Res 5:361-397.
    • (2004) J Mach Learn Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 39
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Lin C-J. (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput 19 (10):2756-2779.
    • (2007) Neural Comput , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 42
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S., Tamayo P., Mesirov J., Golub T. (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52 (1-2):91-118.
    • (2003) Mach Learn , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 43
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P., Tapper U. (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 45
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Pauca V. P., Piper J., Plemmons R. J. (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl 416 (1):29-47.
    • (2006) Linear Algebra Appl , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 47
    • 0001287271 scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. (1994) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58:267-288.
    • (1994) J R Stat Soc Ser B Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 49
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • Vavasis S. A. (2009) On the complexity of nonnegative matrix factorization. SIAM J Optim 20 (3):1364-1377.
    • (2009) SIAM J Optim , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.A.1
  • 50
    • 12344317125 scopus 로고    scopus 로고
    • Improving non-negative matrix factorizations through structured initialization
    • Wild S., Curry J., Dougherty A. (2004) Improving non-negative matrix factorizations through structured initialization. Pattern Recognit 37:2217-2232.
    • (2004) Pattern Recognit , vol.37 , pp. 2217-2232
    • Wild, S.1    Curry, J.2    Dougherty, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.