-
1
-
-
33847015674
-
Computational analysis of the synergy among multiple interacting genes
-
PID: 17299419
-
Anastassiou, D. (2007). Computational analysis of the synergy among multiple interacting genes. Molecular Systems Biology,. doi:10.1038/msb4100124.
-
(2007)
Molecular Systems Biology
-
-
Anastassiou, D.1
-
2
-
-
73449091872
-
Evidence for the contribution of insulin resistance to the development of cachexia in tumor bearing mice
-
COI: 1:CAS:528:DC%2BD1MXhsFGjs7bK
-
Asp, M. L., Tian, M., Wendel, A. A., & Belury, M. A. (2010). Evidence for the contribution of insulin resistance to the development of cachexia in tumor bearing mice. International Journal of Cancer,126, 756–763.
-
(2010)
International Journal of Cancer
, vol.126
, pp. 756-763
-
-
Asp, M.L.1
Tian, M.2
Wendel, A.A.3
Belury, M.A.4
-
3
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning,45, 5–32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
60549116505
-
Dietary intake of ω-6 and ω-3 fatty acids and risk of colorectal cancer in a prospective cohort of U.S. men and women
-
COI: 1:CAS:528:DC%2BD1MXhslShuro%3D, PID: 19190143
-
Daniel, C. R., et al. (2009). Dietary intake of ω-6 and ω-3 fatty acids and risk of colorectal cancer in a prospective cohort of U.S. men and women. Cancer Epidemiology, Biomarkers and Prevention,18, 516–525. doi:10.1158/1055-9965.epi-08-0750.
-
(2009)
Cancer Epidemiology, Biomarkers and Prevention
, vol.18
, pp. 516-525
-
-
Daniel, C.R.1
-
5
-
-
84906691299
-
A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
-
COI: 1:CAS:528:DC%2BC2cXhtFGlt7fP, PID: 25083512
-
Deng, B.-C., Yun, Y.-H., Liang, Y.-Z., & Yi, L.-Z. (2014). A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling. Analyst,139, 4836–4845. doi:10.1039/c4an00730a.
-
(2014)
Analyst
, vol.139
, pp. 4836-4845
-
-
Deng, B.-C.1
Yun, Y.-H.2
Liang, Y.-Z.3
Yi, L.-Z.4
-
6
-
-
84923974832
-
A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
-
COI: 1:CAS:528:DC%2BC2MXht1Olt7w%3D, PID: 25665981
-
Deng, B.-C., Yun, Y.-H., Ma, P., Lin, C.-C., Ren, D.-B., & Liang, Y.-Z. (2015). A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals. Analyst,140, 1876–1885. doi:10.1039/C4AN02123A.
-
(2015)
Analyst
, vol.140
, pp. 1876-1885
-
-
Deng, B.-C.1
Yun, Y.-H.2
MA, P.3
Lin, C.-C.4
Ren, D.-B.5
Liang, Y.-Z.6
-
7
-
-
84900342981
-
NMR metabolomics of human blood and urine in disease research
-
COI: 1:CAS:528:DC%2BC3sXhs1yqsbjJ, PID: 24854435
-
Duarte, I. F., Diaz, S. O., & Gil, A. M. (2014). NMR metabolomics of human blood and urine in disease research. Journal of Pharmaceutical and Biomedical Analysis,93, 17–26. doi:10.1016/j.jpba.2013.09.025.
-
(2014)
Journal of Pharmaceutical and Biomedical Analysis
, vol.93
, pp. 17-26
-
-
Duarte, I.F.1
Diaz, S.O.2
Gil, A.M.3
-
8
-
-
34250636650
-
Colon cancer therapy: New perspectives of nutritional manipulations using polyunsaturated fatty acids
-
COI: 1:CAS:528:DC%2BD2sXotl2lsbw%3D
-
Dupertuis, Y. M., Meguid, M. M., & Pichard, C. (2007). Colon cancer therapy: New perspectives of nutritional manipulations using polyunsaturated fatty acids. Current Opinion in Clinical Nutrition & Metabolic Care,10, 427–432. doi:10.1097/MCO.0b013e3281e2c9d4.
-
(2007)
Current Opinion in Clinical Nutrition & Metabolic Care
, vol.10
, pp. 427-432
-
-
Dupertuis, Y.M.1
Meguid, M.M.2
Pichard, C.3
-
9
-
-
79951727039
-
Learning to predict cancer-associated skeletal muscle wasting from 1H-NMR profiles of urinary metabolites
-
Eisner, R., et al. (2010). Learning to predict cancer-associated skeletal muscle wasting from 1H-NMR profiles of urinary metabolites. Metabolomics,7, 25–34. doi:10.1007/s11306-010-0232-9.
-
(2010)
Metabolomics
, vol.7
, pp. 25-34
-
-
Eisner, R.1
-
10
-
-
84889083637
-
Assessing feature relevance in NPLS models by VIP
-
COI: 1:CAS:528:DC%2BC3sXhtVSls7fK
-
Favilla, S., Durante, C., Vigni, M. L., & Cocchi, M. (2013). Assessing feature relevance in NPLS models by VIP. Chemometrics and Intelligent Laboratory Systems,129, 76–86. doi:10.1016/j.chemolab.2013.05.013.
-
(2013)
Chemometrics and Intelligent Laboratory Systems
, vol.129
, pp. 76-86
-
-
Favilla, S.1
Durante, C.2
Vigni, M.L.3
Cocchi, M.4
-
11
-
-
85018127464
-
Double cross-validation. In: News 3 Interview: Katherine Bakeev 4 Meetings: NIR on the Go 6 Quasi-Imaging Spectrometer with Programmable Field of View 8 Laboratory Profile: Regional Breeders Association of Lombardy 11, 2010, Vol. 17, p
-
Fearn, T. (2010). Double cross-validation. In: News 3 Interview: Katherine Bakeev 4 Meetings: NIR on the Go 6 Quasi-Imaging Spectrometer with Programmable Field of View 8 Laboratory Profile: Regional Breeders Association of Lombardy 11, 2010, Vol. 17, p. 201014
-
(2010)
201014
-
-
Fearn, T.1
-
12
-
-
84902656830
-
Group variable selection with oracle property by weight-fused adaptive elastic net model for strongly correlated data
-
Fu, G.-H., Zhang, W.-M., Dai, L., & Fu, Y.-Z. (2013). Group variable selection with oracle property by weight-fused adaptive elastic net model for strongly correlated data. Communications in Statistics: Simulation and Computation,43, 2468–2481. doi:10.1080/03610918.2012.752841.
-
(2013)
Communications in Statistics: Simulation and Computation
, vol.43
, pp. 2468-2481
-
-
Fu, G.-H.1
Zhang, W.-M.2
Dai, L.3
Fu, Y.-Z.4
-
13
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
COI: 1:CAS:528:DyaK1MXmvVOhu7g%3D, PID: 10521349
-
Golub, T. R., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science,286, 531–537. doi:10.1126/science.286.5439.531.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
-
14
-
-
70450064693
-
Variable importance assessment in regression: Linear regression versus random forest
-
Grömping, U. (2009). Variable importance assessment in regression: Linear regression versus random forest. The American Statistician,63, 308–319. doi:10.1198/tast.2009.08199.
-
(2009)
The American Statistician
, vol.63
, pp. 308-319
-
-
Grömping, U.1
-
15
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,6, 65–70.
-
(1979)
Scandinavian Journal of Statistics
, vol.6
, pp. 65-70
-
-
Holm, S.1
-
16
-
-
0038047907
-
Relation between permutation-test P values and classifier error estimates
-
Hsing, T., Attoor, S., & Dougherty, E. (2003). Relation between permutation-test P values and classifier error estimates. Machine Learning,52, 11–30. doi:10.1023/a:1023985022691.
-
(2003)
Machine Learning
, vol.52
, pp. 11-30
-
-
Hsing, T.1
Attoor, S.2
Dougherty, E.3
-
18
-
-
84880198853
-
The cancer tumor: A metabolic parasite?
-
COI: 1:CAS:528:DC%2BC3sXhtVartLrF, PID: 23615669
-
Icard, P., & Lincet, H. (2013). The cancer tumor: A metabolic parasite? Bulletin du Cancer,100, 427–433.
-
(2013)
Bulletin du Cancer
, vol.100
, pp. 427-433
-
-
Icard, P.1
Lincet, H.2
-
19
-
-
24044501294
-
Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure
-
COI: 1:CAS:528:DC%2BD2MXosVeisr8%3D, PID: 16087974
-
Kien, C. L., Bunn, J. Y., & Ugrasbul, F. (2005). Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. The American Journal of Clinical Nutrition,82, 320–326.
-
(2005)
The American Journal of Clinical Nutrition
, vol.82
, pp. 320-326
-
-
Kien, C.L.1
Bunn, J.Y.2
Ugrasbul, F.3
-
20
-
-
77954355416
-
Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots
-
COI: 1:CAS:528:DC%2BC3cXhtFyqtL7M
-
Kvalheim, O. M. (2010). Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots. Journal of Chemometrics,24, 496–504. doi:10.1002/cem.1289.
-
(2010)
Journal of Chemometrics
, vol.24
, pp. 496-504
-
-
Kvalheim, O.M.1
-
21
-
-
84905695758
-
Variable importance in latent variable regression models
-
Kvalheim, O. M., Arneberg, R., Bleie, O., Rajalahti, T., Smilde, A. K., & Westerhuis, J. A. (2014). Variable importance in latent variable regression models. Journal of Chemometrics,. doi:10.1002/cem.2626.
-
(2014)
Journal of Chemometrics
-
-
Kvalheim, O.M.1
Arneberg, R.2
Bleie, O.3
Rajalahti, T.4
Smilde, A.K.5
Westerhuis, J.A.6
-
22
-
-
84898546574
-
Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome
-
PID: 25814918
-
Laborde, C. M., et al. (2013). Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome. Metabolomics,10, 414–424. doi:10.1007/s11306-013-0595-9.
-
(2013)
Metabolomics
, vol.10
, pp. 414-424
-
-
Laborde, C.M.1
-
23
-
-
84865148650
-
Model-population analysis and its applications in chemical and biological modeling
-
Li, H.-D., Liang, Y.-Z., Cao, D.-S., & Xu, Q.-S. (2012a). Model-population analysis and its applications in chemical and biological modeling. TrAC Trends in Analytical Chemistry,38, 154–162. doi:10.1016/j.trac.2011.11.007.
-
(2012)
TrAC Trends in Analytical Chemistry
, vol.38
, pp. 154-162
-
-
Li, H.-D.1
Liang, Y.-Z.2
Cao, D.-S.3
Xu, Q.-S.4
-
24
-
-
67650369751
-
Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
-
COI: 1:CAS:528:DC%2BD1MXoslGnsbw%3D, PID: 19616692
-
Li, H.-D., Liang, Y.-Z., Xu, Q.-S., & Cao, D.-S. (2009). Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta,648, 77–84. doi:10.1016/j.aca.2009.06.046.
-
(2009)
Analytica Chimica Acta
, vol.648
, pp. 77-84
-
-
Li, H.-D.1
Liang, Y.-Z.2
Xu, Q.-S.3
Cao, D.-S.4
-
25
-
-
77957041205
-
Model population analysis for variable selection
-
Li, H.-D., Liang, Y.-Z., Xu, Q.-S., & Cao, D.-S. (2010a). Model population analysis for variable selection. Journal of Chemometr,24, 418–423. doi:10.1002/cem.1300.
-
(2010)
Journal of Chemometr
, vol.24
, pp. 418-423
-
-
Li, H.-D.1
Liang, Y.-Z.2
Xu, Q.-S.3
Cao, D.-S.4
-
26
-
-
80052889367
-
Recipe for uncovering predictive genes using support vector machines based on model population analysis
-
PID: 21339535
-
Li, H.-D., Liang, Y.-Z., Xu, Q.-S., & Cao, D.-S. (2011). Recipe for uncovering predictive genes using support vector machines based on model population analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics,8, 1633–1641. doi:10.1109/tcbb.2011.36.
-
(2011)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.8
, pp. 1633-1641
-
-
Li, H.-D.1
Liang, Y.-Z.2
Xu, Q.-S.3
Cao, D.-S.4
-
27
-
-
84864300519
-
Random frog: An efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification
-
COI: 1:CAS:528:DC%2BC38XhtVamtL7F, PID: 22840646
-
Li, H.-D., Xu, Q.-S., & Liang, Y.-Z. (2012b). Random frog: An efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification. Analytica Chimica Acta,740, 20–26. doi:10.1016/j.aca.2012.06.031.
-
(2012)
Analytica Chimica Acta
, vol.740
, pp. 20-26
-
-
Li, H.-D.1
Xu, Q.-S.2
Liang, Y.-Z.3
-
28
-
-
77954447604
-
Recipe for revealing informative metabolites based on model population analysis
-
COI: 1:CAS:528:DC%2BC3cXosV2qsr4%3D
-
Li, H.-D., Zeng, M.-M., Tan, B.-B., Liang, Y.-Z., Xu, Q.-S., & Cao, D.-S. (2010b). Recipe for revealing informative metabolites based on model population analysis. Metabolomics,6, 353–361. doi:10.1007/s11306-010-0213-z.
-
(2010)
Metabolomics
, vol.6
, pp. 353-361
-
-
Li, H.-D.1
Zeng, M.-M.2
Tan, B.-B.3
Liang, Y.-Z.4
Xu, Q.-S.5
Cao, D.-S.6
-
29
-
-
0000174867
-
Model validation by permutation tests: Applications to variable selection
-
COI: 1:CAS:528:DyaK2sXjtVyku7s%3D
-
Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L. (1996). Model validation by permutation tests: Applications to variable selection. Journal of Chemometrics,10, 521–532. doi:10.1002/(sici)1099-128x(199609)10:5/6<521:aid-cem448>3.0.co;2-j.
-
(1996)
Journal of Chemometrics
, vol.10
, pp. 521-532
-
-
Lindgren, F.1
Hansen, B.2
Karcher, W.3
Sjöström, M.4
Eriksson, L.5
-
30
-
-
84855333543
-
Identification of possible biomarkers for breast cancer from free fatty acid profiles determined by GC–MS and multivariate statistical analysis
-
COI: 1:CAS:528:DC%2BC38XmtFamtg%3D%3D, PID: 22061338
-
Lv, W., & Yang, T. (2012). Identification of possible biomarkers for breast cancer from free fatty acid profiles determined by GC–MS and multivariate statistical analysis. Clinical Biochemistry,45, 127–133. doi:10.1016/j.clinbiochem.2011.10.011.
-
(2012)
Clinical Biochemistry
, vol.45
, pp. 127-133
-
-
Lv, W.1
Yang, T.2
-
31
-
-
72549095180
-
Chemometrics in metabolomics—A review in human disease diagnosis
-
COI: 1:CAS:528:DC%2BD1MXhs1WnsbrL, PID: 20103103
-
Madsen, R., Lundstedt, T., & Trygg, J. (2010). Chemometrics in metabolomics—A review in human disease diagnosis. Analytica Chimica Acta,659, 23–33. doi:10.1016/j.aca.2009.11.042.
-
(2010)
Analytica Chimica Acta
, vol.659
, pp. 23-33
-
-
Madsen, R.1
Lundstedt, T.2
Trygg, J.3
-
32
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other stochastically larger than the other
-
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other stochastically larger than the other. The Annals of Mathematical Statistics,18, 50–60.
-
(1947)
The Annals of Mathematical Statistics
, vol.18
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
33
-
-
39149090650
-
Maximizing the area under the ROC curve by pairwise feature combination
-
Marrocco, C., Duin, R. P. W., & Tortorella, F. (2008). Maximizing the area under the ROC curve by pairwise feature combination. Pattern Recognition,41, 1961–1974. doi:10.1016/j.patcog.2007.11.017.
-
(2008)
Pattern Recognition
, vol.41
, pp. 1961-1974
-
-
Marrocco, C.1
Duin, R.P.W.2
Tortorella, F.3
-
35
-
-
0031775229
-
Blood amino acid compartmentation in men and women with different degrees of obesity
-
COI: 1:CAS:528:DyaK1cXnvFKls7w%3D
-
Proenza, A. M., Roca, P., Crespí, C., Lladó, I., & Palou, A. (1998). Blood amino acid compartmentation in men and women with different degrees of obesity. The Journal of Nutritional Biochemistry,9, 697–704. doi:10.1016/S0955-2863(98)00072-2.
-
(1998)
The Journal of Nutritional Biochemistry
, vol.9
, pp. 697-704
-
-
Proenza, A.M.1
Roca, P.2
Crespí, C.3
Lladó, I.4
Palou, A.5
-
36
-
-
22944454584
-
-
Springer, Berlin
-
Radivojac, P., Obradovic, Z., Dunker, A. K., & Vucetic, S. (2004). Feature selection filters based on the permutation test Machine Learning: ECML (pp. 334–346). Berlin: Springer.
-
(2004)
Feature selection filters based on the permutation test Machine Learning: ECML
, pp. 334-346
-
-
Radivojac, P.1
Obradovic, Z.2
Dunker, A.K.3
Vucetic, S.4
-
37
-
-
58149468086
-
Dietary intakes of ω-6 and ω-3 polyunsaturated fatty acids and the risk of breast cancer
-
Thiébaut, A. C. M., et al. (2009). Dietary intakes of ω-6 and ω-3 polyunsaturated fatty acids and the risk of breast cancer. International Journal of Cancer,124, 924–931. doi:10.1002/ijc.23980.
-
(2009)
International Journal of Cancer
, vol.124
, pp. 924-931
-
-
Thiébaut, A.C.M.1
-
39
-
-
79952601015
-
Noise incorporated subwindow permutation analysis for informative gene selection using support vector machines
-
COI: 1:CAS:528:DC%2BC3MXjtFSjsb0%3D, PID: 21321685
-
Wang, Q., Li, H.-D., Xu, Q.-S., & Liang, Y.-Z. (2011). Noise incorporated subwindow permutation analysis for informative gene selection using support vector machines. Analyst,136, 1456–1463.
-
(2011)
Analyst
, vol.136
, pp. 1456-1463
-
-
Wang, Q.1
Li, H.-D.2
Xu, Q.-S.3
Liang, Y.-Z.4
-
40
-
-
33745700438
-
Targeted profiling: Quantitative analysis of 1H NMR metabolomics data
-
COI: 1:CAS:528:DC%2BD28XksFKktbw%3D, PID: 16808451
-
Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry,78, 4430–4442.
-
(2006)
Analytical Chemistry
, vol.78
, pp. 4430-4442
-
-
Weljie, A.M.1
Newton, J.2
Mercier, P.3
Carlson, E.4
Slupsky, C.M.5
-
41
-
-
38949180527
-
Assessment of PLSDA cross validation
-
COI: 1:CAS:528:DC%2BD1cXisFSmtL8%3D
-
Westerhuis, J. A., et al. (2008). Assessment of PLSDA cross validation. Metabolomics,4, 81–89. doi:10.1007/s11306-007-0099-6.
-
(2008)
Metabolomics
, vol.4
, pp. 81-89
-
-
Westerhuis, J.A.1
-
42
-
-
41049096359
-
Quantitative metabolomics using NMR
-
COI: 1:CAS:528:DC%2BD1cXjvF2jtLg%3D
-
Wishart, D. S. (2008). Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry,27, 228–237. doi:10.1016/j.trac.2007.12.001.
-
(2008)
TrAC Trends in Analytical Chemistry
, vol.27
, pp. 228-237
-
-
Wishart, D.S.1
-
43
-
-
0035965476
-
PLS-regression: A basic tool of chemometrics
-
COI: 1:CAS:528:DC%2BD3MXotF2mtLw%3D
-
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems,58, 109–130. doi:10.1016/s0169-7439(01)00155-1.
-
(2001)
Chemometrics and Intelligent Laboratory Systems
, vol.58
, pp. 109-130
-
-
Wold, S.1
Sjöström, M.2
Eriksson, L.3
-
45
-
-
74449084100
-
Monte-Carlo methods for determining optimal number of significant variables
-
COI: 1:CAS:528:DC%2BD1MXhsFGrurfP
-
Wongravee, K., et al. (2009). Monte-Carlo methods for determining optimal number of significant variables. Application to Mouse Urinary Profiles. Metabolomics,5, 387–406. doi:10.1007/s11306-009-0164-4.
-
(2009)
Application to Mouse Urinary Profiles. Metabolomics
, vol.5
, pp. 387-406
-
-
Wongravee, K.1
-
46
-
-
33747619854
-
Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling
-
Xiaonan, W., Zhaoyong, H., Junping, H., Jie, D., & William, M. E. (2006). Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology,147, 4160–4168. doi:10.1210/en.2006-0251.
-
(2006)
Endocrinology
, vol.147
, pp. 4160-4168
-
-
Xiaonan, W.1
Zhaoyong, H.2
Junping, H.3
Jie, D.4
William, M.E.5
-
48
-
-
84904399758
-
A metabolic discrimination model for nasopharyngeal carcinoma and its potential role in the therapeutic evaluation of radiotherapy
-
Yi, L., et al. (2013). A metabolic discrimination model for nasopharyngeal carcinoma and its potential role in the therapeutic evaluation of radiotherapy. Metabolomics,. doi:10.1007/s11306-013-0606-x.
-
(2013)
Metabolomics
-
-
Yi, L.1
-
49
-
-
84885001692
-
A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems
-
COI: 1:CAS:528:DC%2BC3sXhsFegsrzN, PID: 24003437
-
Yun, Y.-H., Liang, Y.-Z., Xie, G.-X., Li, H.-D., Cao, D.-S., & Xu, Q.-S. (2013). A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems. Analyst,138, 6412–6421. doi:10.1039/c3an00714f.
-
(2013)
Analyst
, vol.138
, pp. 6412-6421
-
-
Yun, Y.-H.1
Liang, Y.-Z.2
Xie, G.-X.3
Li, H.-D.4
Cao, D.-S.5
Xu, Q.-S.6
-
50
-
-
84887237244
-
A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration
-
COI: 1:CAS:528:DC%2BC3sXhvFyqsLvE
-
Yun, Y.-H., et al. (2014a). A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration. Chemometrics and Intelligent Laboratory Systems,130, 76–83. doi:10.1016/j.chemolab.2013.09.007.
-
(2014)
Chemometrics and Intelligent Laboratory Systems
, vol.130
, pp. 76-83
-
-
Yun, Y.-H.1
-
51
-
-
84922622594
-
Using variable combination population analysis for variable selection in multivariate calibration
-
PID: 25682424
-
Yun, Y.-H., et al. (2014b). Using variable combination population analysis for variable selection in multivariate calibration. Analytica Chimica Acta, 862, 14–23. doi:10.1016/j.aca.2014.12.048.
-
(2014)
Analytica Chimica Acta
, vol.862
, pp. 14-23
-
-
Yun, Y.-H.1
-
52
-
-
84890439287
-
A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
-
COI: 1:CAS:528:DC%2BC3sXhvFOlt7vI, PID: 24356218
-
Yun, Y.-H., et al. (2014c). A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration. Analytica Chimica Acta,807, 36–43. doi:10.1016/j.aca.2013.11.032.
-
(2014)
Analytica Chimica Acta
, vol.807
, pp. 36-43
-
-
Yun, Y.-H.1
-
53
-
-
77349100587
-
Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis
-
COI: 1:CAS:528:DC%2BC3cXitVKmtbY%3D, PID: 20092977
-
Zeng, M., et al. (2010). Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis,52, 265–272. doi:10.1016/j.jpba.2010.01.002.
-
(2010)
Journal of Pharmaceutical and Biomedical Analysis
, vol.52
, pp. 265-272
-
-
Zeng, M.1
-
54
-
-
84868640681
-
Improving accuracy for cancer classification with a new algorithm for genes selection
-
Zhang, H., Wang, H., Dai, Z., Chen, M.-S., & Yuan, Z. (2012). Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinformatics,13, 1–20. doi:10.1186/1471-2105-13-298.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 1-20
-
-
Zhang, H.1
Wang, H.2
Dai, Z.3
Chen, M.-S.4
Yuan, Z.5
-
56
-
-
0027457620
-
Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
-
COI: 1:CAS:528:DyaK3sXktVCitLs%3D, PID: 8472349
-
Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry,39, 561–577.
-
(1993)
Clinical Chemistry
, vol.39
, pp. 561-577
-
-
Zweig, M.H.1
Campbell, G.2
|