|
Volumn 807, Issue , 2014, Pages 36-43
|
A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
|
Author keywords
Informative variables; Iteratively retaining informative variables; Partial least squares; Random combination; Variable selection
|
Indexed keywords
LEAST SQUARES APPROXIMATIONS;
MONTE CARLO METHODS;
INFORMATIVE VARIABLES;
ITERATIVELY RETAINING INFORMATIVE VARIABLES;
PARTIAL LEAST SQUARE (PLS);
RANDOM COMBINATION;
VARIABLE SELECTION;
ITERATIVE METHODS;
DIESEL FUEL;
ARTICLE;
BIOINFORMATICS;
CALIBRATION;
CLASSIFICATION;
GENETIC ALGORITHM;
GENOMICS;
ITERATIVELY RETAINING INFORMATIVE VARIABLE;
MAIZE;
MATHEMATICAL VARIABLE;
MONTE CARLO METHOD;
NEAR INFRARED SPECTROSCOPY;
PARTIAL LEAST SQUARES REGRESSION;
PRIORITY JOURNAL;
QUANTITATIVE STRUCTURE ACTIVITY RELATION;
SAMPLING;
SOYBEAN;
INFORMATIVE VARIABLES;
ITERATIVELY RETAINING INFORMATIVE VARIABLES;
PARTIAL LEAST SQUARES;
RANDOM COMBINATION;
VARIABLE SELECTION;
ALGORITHMS;
CALIBRATION;
INTERNET;
LEAST-SQUARES ANALYSIS;
MODELS, THEORETICAL;
MONTE CARLO METHOD;
SOFTWARE;
SOYBEAN OIL;
SPECTROSCOPY, NEAR-INFRARED;
WATER;
ZEA MAYS;
|
EID: 84890439287
PISSN: 00032670
EISSN: 18734324
Source Type: Journal
DOI: 10.1016/j.aca.2013.11.032 Document Type: Article |
Times cited : (195)
|
References (37)
|