메뉴 건너뛰기




Volumn 862, Issue , 2015, Pages 14-23

Using variable combination population analysis for variable selection in multivariate calibration

Author keywords

Exponentially decreasing function; Model population analysis; Multivariate calibration; Partial least squares; Variable combination; Variable selection

Indexed keywords

CALIBRATION; GENETIC ALGORITHMS; ITERATIVE METHODS; LEAST SQUARES APPROXIMATIONS; MONTE CARLO METHODS; MULTIVARIABLE SYSTEMS;

EID: 84922622594     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2014.12.048     Document Type: Article
Times cited : (195)

References (40)
  • 1
    • 84873277702 scopus 로고    scopus 로고
    • The continuity of sample complexity and its relationship to multivariate calibration: a general perspective on first-order calibration of spectral data in analytical chemistry
    • Li H.-D., Liang Y.-Z., Long X.-X., Yun Y.-H., Xu Q.-S. The continuity of sample complexity and its relationship to multivariate calibration: a general perspective on first-order calibration of spectral data in analytical chemistry. Chemometr. Intell. Lab. Syst. 2013, 122:23.
    • (2013) Chemometr. Intell. Lab. Syst. , vol.122 , pp. 23
    • Li, H.-D.1    Liang, Y.-Z.2    Long, X.-X.3    Yun, Y.-H.4    Xu, Q.-S.5
  • 2
    • 84885001692 scopus 로고    scopus 로고
    • A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems
    • Yun Y.-H., Liang Y.-Z., Xie G.-X., Li H.-D., Cao D.-S., Xu Q.-S. A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems. Analyst 2013, 138:6412.
    • (2013) Analyst , vol.138 , pp. 6412
    • Yun, Y.-H.1    Liang, Y.-Z.2    Xie, G.-X.3    Li, H.-D.4    Cao, D.-S.5    Xu, Q.-S.6
  • 3
    • 85162660680 scopus 로고
    • The effect of interferences and calbiration design on accuracy: implications for sensor and sample selection
    • Lorber A., Kowalski B.R. The effect of interferences and calbiration design on accuracy: implications for sensor and sample selection. J. Chemometr. 1988, 2:67.
    • (1988) J. Chemometr. , vol.2 , pp. 67
    • Lorber, A.1    Kowalski, B.R.2
  • 4
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157
    • Guyon, I.1    Elisseeff, A.2
  • 5
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski R.W., Skowron A. Rough set methods in feature selection and recognition. Pattern Recognit. Lett. 2003, 24:833.
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 833
    • Swiniarski, R.W.1    Skowron, A.2
  • 6
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • Lin S.-W., Ying K.-C., Chen S.-C., Lee Z.-J. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 2008, 35:1817.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1817
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 7
    • 0004132705 scopus 로고
    • Wiley, New York, T.N.H. Martens (Ed.)
    • Multivariate Calibration 1989, Wiley, New York. T.N.H. Martens (Ed.).
    • (1989) Multivariate Calibration
  • 8
    • 54549102367 scopus 로고    scopus 로고
    • Forward selection of explanatory variables
    • Blanchet F.G., Legendre P., Borcard D. Forward selection of explanatory variables. Ecology 2008, 89:2623.
    • (2008) Ecology , vol.89 , pp. 2623
    • Blanchet, F.G.1    Legendre, P.2    Borcard, D.3
  • 9
    • 0001912153 scopus 로고
    • Comparison of forward selection backward elimination, and generalized simulated annealing for variable selection
    • Sutter J.M., Kalivas J.H. Comparison of forward selection backward elimination, and generalized simulated annealing for variable selection. Microchem. J. 1993, 47:60.
    • (1993) Microchem. J. , vol.47 , pp. 60
    • Sutter, J.M.1    Kalivas, J.H.2
  • 11
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm-PLS for feature selection in spectral data sets
    • Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemometr. 2000, 14:643.
    • (2000) J. Chemometr. , vol.14 , pp. 643
    • Leardi, R.1
  • 12
    • 0034868132 scopus 로고    scopus 로고
    • Genetic algorithms in chemometrics and chemistry: a review
    • Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J. Chemometr. 2001, 15:559.
    • (2001) J. Chemometr. , vol.15 , pp. 559
    • Leardi, R.1
  • 13
    • 84887237244 scopus 로고    scopus 로고
    • A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration
    • Yun Y.-H., Cao D.-S., Tan M.-L., Yan J., Ren D.-B., Xu Q.-S., Yu L., Liang Y.-Z. A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration. Chemometr. Intell. Lab. Syst. 2014, 130:76.
    • (2014) Chemometr. Intell. Lab. Syst. , vol.130 , pp. 76
    • Yun, Y.-H.1    Cao, D.-S.2    Tan, M.-L.3    Yan, J.4    Ren, D.-B.5    Xu, Q.-S.6    Yu, L.7    Liang, Y.-Z.8
  • 14
    • 0024738079 scopus 로고
    • Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry
    • Kalivas J.H., Roberts N., Sutter J.M. Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry. Anal. Chem. 1989, 61:2024.
    • (1989) Anal. Chem. , vol.61 , pp. 2024
    • Kalivas, J.H.1    Roberts, N.2    Sutter, J.M.3
  • 16
    • 38149087476 scopus 로고    scopus 로고
    • A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra
    • Cai W., Li Y., Shao X. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometr. Intell. Lab. Syst. 2008, 90:188.
    • (2008) Chemometr. Intell. Lab. Syst. , vol.90 , pp. 188
    • Cai, W.1    Li, Y.2    Shao, X.3
  • 17
    • 67650369751 scopus 로고    scopus 로고
    • Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
    • Li H.-D., Liang Y.-Z., Xu Q.-S., Cao D.-S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648:77.
    • (2009) Anal. Chim. Acta , vol.648 , pp. 77
    • Li, H.-D.1    Liang, Y.-Z.2    Xu, Q.-S.3    Cao, D.-S.4
  • 18
    • 84862791623 scopus 로고    scopus 로고
    • Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra
    • Zheng K., Li Q., Wang J., Geng J., Cao P., Sui T., Wang X., Du Y. Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra. Chemometr. Intell. Lab. Syst. 2012, 112:48.
    • (2012) Chemometr. Intell. Lab. Syst. , vol.112 , pp. 48
    • Zheng, K.1    Li, Q.2    Wang, J.3    Geng, J.4    Cao, P.5    Sui, T.6    Wang, X.7    Du, Y.8
  • 19
    • 0001286453 scopus 로고    scopus 로고
    • Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems
    • Forina M., Casolino C., Pizarro Millan C. Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems. J. Chemometr. 1999, 13:165.
    • (1999) J. Chemometr. , vol.13 , pp. 165
    • Forina, M.1    Casolino, C.2    Pizarro Millan, C.3
  • 21
    • 56949090101 scopus 로고    scopus 로고
    • Bayesian linear regression and variable selection for spectroscopic calibration
    • Chen T., Martin E. Bayesian linear regression and variable selection for spectroscopic calibration. Anal. Chim. Acta 2009, 631:13.
    • (2009) Anal. Chim. Acta , vol.631 , pp. 13
    • Chen, T.1    Martin, E.2
  • 22
    • 84864300519 scopus 로고    scopus 로고
    • Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification
    • Li H.-D., Xu Q.-S., Liang Y.-Z. Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification. Anal. Chim. Acta 2012, 740:20.
    • (2012) Anal. Chim. Acta , vol.740 , pp. 20
    • Li, H.-D.1    Xu, Q.-S.2    Liang, Y.-Z.3
  • 23
  • 24
    • 80052889367 scopus 로고    scopus 로고
    • Recipe for uncovering predictive genes using support vector machines based on model population analysis
    • Li H.-D., Liang Y.-Z., Xu Q.-S., Cao D.-S. Recipe for uncovering predictive genes using support vector machines based on model population analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8:1633.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.8 , pp. 1633
    • Li, H.-D.1    Liang, Y.-Z.2    Xu, Q.-S.3    Cao, D.-S.4
  • 25
    • 84890439287 scopus 로고    scopus 로고
    • A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
    • Yun Y.-H., Wang W.-T., Tan M.-L., Liang Y.-Z., Li H.-D., Cao D.-S., Lu H.-M., Xu Q.-S. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration. Anal. Chim. Acta 2014, 807:36.
    • (2014) Anal. Chim. Acta , vol.807 , pp. 36
    • Yun, Y.-H.1    Wang, W.-T.2    Tan, M.-L.3    Liang, Y.-Z.4    Li, H.-D.5    Cao, D.-S.6    Lu, H.-M.7    Xu, Q.-S.8
  • 27
    • 34249753618 scopus 로고
    • Support vector machine
    • Cortes C., Vapnik V. Support vector machine. Mach. Learn. 1995, 20:273.
    • (1995) Mach. Learn. , vol.20 , pp. 273
    • Cortes, C.1    Vapnik, V.2
  • 28
  • 29
    • 77954447604 scopus 로고    scopus 로고
    • Recipe for revealing informative metabolites based on model population analysis
    • Li H.-D., Zeng M.-M., Tan B.-B., Liang Y.-Z., Xu Q.-S., Cao D.-S. Recipe for revealing informative metabolites based on model population analysis. Metabolomics 2010, 6:353.
    • (2010) Metabolomics , vol.6 , pp. 353
    • Li, H.-D.1    Zeng, M.-M.2    Tan, B.-B.3    Liang, Y.-Z.4    Xu, Q.-S.5    Cao, D.-S.6
  • 30
    • 84865148650 scopus 로고    scopus 로고
    • Model-population analysis and its applications in chemical and biological modeling
    • Li H.-D., Liang Y.-Z., Cao D.-S., Xu Q.-S. Model-population analysis and its applications in chemical and biological modeling. TrAC Trends Anal. Chem. 2012, 38:154.
    • (2012) TrAC Trends Anal. Chem. , vol.38 , pp. 154
    • Li, H.-D.1    Liang, Y.-Z.2    Cao, D.-S.3    Xu, Q.-S.4
  • 31
    • 84922605193 scopus 로고    scopus 로고
    • http://www.libpls.net/.
  • 32
    • 84906691299 scopus 로고    scopus 로고
    • A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
    • Deng B.-C., Yun Y.-H., Liang Y.-Z., Yi L.-Z. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling. Analyst 2014, 139:4836.
    • (2014) Analyst , vol.139 , pp. 4836
    • Deng, B.-C.1    Yun, Y.-H.2    Liang, Y.-Z.3    Yi, L.-Z.4
  • 33
    • 84868640681 scopus 로고    scopus 로고
    • Improving accuracy for cancer classification with a new algorithm for genes selection
    • Zhang H., Wang H., Dai Z., Chen M.-s., Yuan Z. Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinform. 2012, 13:298.
    • (2012) BMC Bioinform. , vol.13 , pp. 298
    • Zhang, H.1    Wang, H.2    Dai, Z.3    Chen, M.-S.4    Yuan, Z.5
  • 34
    • 84862773642 scopus 로고    scopus 로고
    • Genetic algorithms in chemometrics
    • Niazi A., Leardi R. Genetic algorithms in chemometrics. J. Chemometr. 2012, 26:345.
    • (2012) J. Chemometr. , vol.26 , pp. 345
    • Niazi, A.1    Leardi, R.2
  • 35
    • 84922657670 scopus 로고    scopus 로고
    • http://www.eigenvector.com/data/Corn/index.html.
  • 36
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard R.W., Stone L.A. Computer aided design of experiments. Technometrics 1969, 11:137.
    • (1969) Technometrics , vol.11 , pp. 137
    • Kennard, R.W.1    Stone, L.A.2
  • 38
    • 0033905297 scopus 로고    scopus 로고
    • Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
    • Norgaard L., Saudland A., Wagner J., Nielsen J.P., Munck L., Engelsen S.B. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 2000, 54:413.
    • (2000) Appl. Spectrosc. , vol.54 , pp. 413
    • Norgaard, L.1    Saudland, A.2    Wagner, J.3    Nielsen, J.P.4    Munck, L.5    Engelsen, S.B.6
  • 39
    • 0001238580 scopus 로고
    • Genetic algorithms as a tool for wavelength selection in multivariate calibration
    • Jouan-Rimbaud D., Massart D.-L., Leardi R., De Noord O.E. Genetic algorithms as a tool for wavelength selection in multivariate calibration. Anal. Chem. 1995, 67:4295.
    • (1995) Anal. Chem. , vol.67 , pp. 4295
    • Jouan-Rimbaud, D.1    Massart, D.-L.2    Leardi, R.3    De Noord, O.E.4
  • 40
    • 4644259386 scopus 로고    scopus 로고
    • Measurement of the principal components in beer by means of near infrared spectroscopy
    • Li D., Wu Z., Xu D., Xu Y. Measurement of the principal components in beer by means of near infrared spectroscopy. Chin. J. Anal. Chem. 2004, 32:1070.
    • (2004) Chin. J. Anal. Chem. , vol.32 , pp. 1070
    • Li, D.1    Wu, Z.2    Xu, D.3    Xu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.