메뉴 건너뛰기




Volumn 33, Issue , 2015, Pages 112-126

A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches

Author keywords

Expected detection delay; Fault detection; Key performance indicators; Multivariate statistics; Process monitoring

Indexed keywords

BENCHMARKING; FAULT DETECTION; FINITE DIFFERENCE METHOD; PROCESS CONTROL; PROCESS MONITORING; STATISTICAL PROCESS CONTROL; WASTE DISPOSAL;

EID: 84943634048     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2015.06.007     Document Type: Review
Times cited : (180)

References (48)
  • 1
    • 84886674516 scopus 로고    scopus 로고
    • A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
    • S.X. Ding, S. Yin, K.X. Peng, H.Y. Hao, and B. Shen A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill IEEE Trans. Ind. Inform. 9 4 2013 39 47
    • (2013) IEEE Trans. Ind. Inform. , vol.9 , Issue.4 , pp. 39-47
    • Ding, S.X.1    Yin, S.2    Peng, K.X.3    Hao, H.Y.4    Shen, B.5
  • 2
    • 84929377723 scopus 로고    scopus 로고
    • A new soft-sensor-based process monitoring scheme incorporating infrequent KPI measurements
    • Y.A.W. Shardt, H.Y. Hao, and S.X. Ding A new soft-sensor-based process monitoring scheme incorporating infrequent KPI measurements IEEE Trans. Ind. Electron. 62 6 2015 3843 3851
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.6 , pp. 3843-3851
    • Shardt, Y.A.W.1    Hao, H.Y.2    Ding, S.X.3
  • 3
    • 84908117989 scopus 로고    scopus 로고
    • A data-driven multiplicative fault diagnosis approach for automation processes
    • H.Y. Hao, K. Zhang, S.X. Ding, Z.W. Chen, and Y.G. Lei A data-driven multiplicative fault diagnosis approach for automation processes ISA Trans. 53 5 2014 1436 1445
    • (2014) ISA Trans. , vol.53 , Issue.5 , pp. 1436-1445
    • Hao, H.Y.1    Zhang, K.2    Ding, S.X.3    Chen, Z.W.4    Lei, Y.G.5
  • 4
    • 84873707576 scopus 로고    scopus 로고
    • Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process
    • K.X. Peng, K. Zhang, G. Li, and D.H. Zhou Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process Contr. Eng. Pract. 21 4 2013 360 369
    • (2013) Contr. Eng. Pract. , vol.21 , Issue.4 , pp. 360-369
    • Peng, K.X.1    Zhang, K.2    Li, G.3    Zhou, D.H.4
  • 5
    • 84908118017 scopus 로고    scopus 로고
    • Adaptive PCA based fault diagnosis scheme in imperial smelting process
    • Z.K. Hu, Z.W. Chen, W.H. Gui, and B. Jiang Adaptive PCA based fault diagnosis scheme in imperial smelting process ISA Trans. 53 5 2014 1446 1455
    • (2014) ISA Trans. , vol.53 , Issue.5 , pp. 1446-1455
    • Hu, Z.K.1    Chen, Z.W.2    Gui, W.H.3    Jiang, B.4
  • 6
    • 83655184657 scopus 로고    scopus 로고
    • Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: The dynamic T-PLS approach
    • G. Li, S.J. Qin, B.S. Liu, and D.H. Zhou Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach IEEE Trans. Neural Netw. 22 12 2011 2262 2271
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2262-2271
    • Li, G.1    Qin, S.J.2    Liu, B.S.3    Zhou, D.H.4
  • 7
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • S.J. Qin Survey on data-driven industrial process monitoring and diagnosis Annu. Rev. Control 36 2 2012 220 234
    • (2012) Annu. Rev. Control , vol.36 , Issue.2 , pp. 220-234
    • Qin, S.J.1
  • 8
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S.J. Qin Statistical process monitoring: basics and beyond J. Chemom. 17 8-9 2003 480 502
    • (2003) J. Chemom. , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.J.1
  • 9
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • J.F. Macgregor, C. Jaeckle, C. Kiparissides, and M. Koutoudi Process monitoring and diagnosis by multiblock PLS methods AIChE J. 40 5 1994 826 838
    • (1994) AIChE J. , vol.40 , Issue.5 , pp. 826-838
    • Macgregor, J.F.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 10
    • 77957561573 scopus 로고    scopus 로고
    • Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models
    • G. Li, S.J. Qin, and D.H. Zhou Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models Ind. Eng. Chem. Res. 49 19 2010 9175 9183
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.19 , pp. 9175-9183
    • Li, G.1    Qin, S.J.2    Zhou, D.H.3
  • 11
    • 84872859706 scopus 로고    scopus 로고
    • Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures
    • S.J. Qin, and Y.Y. Zheng Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures AIChE J. 59 2 2013 496 504
    • (2013) AIChE J. , vol.59 , Issue.2 , pp. 496-504
    • Qin, S.J.1    Zheng, Y.Y.2
  • 12
    • 84890854491 scopus 로고    scopus 로고
    • Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach
    • J. Mori, and J. Yu Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach J. Process Control 24 1 2014 57 71
    • (2014) J. Process Control , vol.24 , Issue.1 , pp. 57-71
    • Mori, J.1    Yu, J.2
  • 13
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • M. Kano, and Y. Nakagawa Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry Comput. Chem. Eng. 32 1 2008 12 24
    • (2008) Comput. Chem. Eng. , vol.32 , Issue.1 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 14
    • 84894261826 scopus 로고    scopus 로고
    • Data-driven soft sensor development based on deep learning technique
    • C. Shang, F. Yang, D. Huang, and W. Lyu Data-driven soft sensor development based on deep learning technique J. Process Control 24 3 2014 223 233
    • (2014) J. Process Control , vol.24 , Issue.3 , pp. 223-233
    • Shang, C.1    Yang, F.2    Huang, D.3    Lyu, W.4
  • 15
    • 73049084841 scopus 로고    scopus 로고
    • Geometric properties of partial least squares for process monitoring
    • G. Li, S.J. Qin, and D.H. Zhou Geometric properties of partial least squares for process monitoring Automatica 46 1 2010 204 210
    • (2010) Automatica , vol.46 , Issue.1 , pp. 204-210
    • Li, G.1    Qin, S.J.2    Zhou, D.H.3
  • 17
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hillbert space
    • R. Rosipal, and L.J. Trejo Kernel partial least squares regression in reproducing kernel Hillbert space J. Mach. Learn. Res. 2 2001 97 123
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 18
    • 0031234736 scopus 로고    scopus 로고
    • Modeling and control of multivariable processes: The dynamic projection to latent structures approach
    • S. Lakshminarayanan, S.L. Shah, and K. Nandakumar Modeling and control of multivariable processes: the dynamic projection to latent structures approach AIChE J. 43 9 1997 2307 2323
    • (1997) AIChE J. , vol.43 , Issue.9 , pp. 2307-2323
    • Lakshminarayanan, S.1    Shah, S.L.2    Nandakumar, K.3
  • 19
    • 84897108321 scopus 로고    scopus 로고
    • Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results
    • S.X. Ding Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results J. Process Contr. 24 2 2014 431 449
    • (2014) J. Process Contr. , vol.24 , Issue.2 , pp. 431-449
    • Ding, S.X.1
  • 20
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • M. Kano, M. Koichi, S. Hasebe, and I. Hashimoto Inferential control system of distillation compositions using dynamic partial least squares regression J. Process Contr. 10 2-3 2000 157 166
    • (2000) J. Process Contr. , vol.10 , Issue.2-3 , pp. 157-166
    • Kano, M.1    Koichi, M.2    Hasebe, S.3    Hashimoto, I.4
  • 21
    • 0026578546 scopus 로고
    • Recursive algorithm for partial least squares regression
    • K. Helland, H.E. Berntsen, and O.S. Borgen Recursive algorithm for partial least squares regression Chemom. Intel. Lab. Syst. 14 1-3 1992 129 137
    • (1992) Chemom. Intel. Lab. Syst. , vol.14 , Issue.1-3 , pp. 129-137
    • Helland, K.1    Berntsen, H.E.2    Borgen, O.S.3
  • 22
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • S.J. Qin Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 22 4-5 1998 503 514
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 23
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • D.H. Zhou, G. Li, and S.J. Qin Total projection to latent structures for process monitoring AIChE J. 56 1 2010 168 178
    • (2010) AIChE J. , vol.56 , Issue.1 , pp. 168-178
    • Zhou, D.H.1    Li, G.2    Qin, S.J.3
  • 25
    • 85162676194 scopus 로고
    • PLS regression methods
    • A. Höskuldsson PLS regression methods J. Chemom. 2 3 1988 211 228
    • (1988) J. Chemom. , vol.2 , Issue.3 , pp. 211-228
    • Höskuldsson, A.1
  • 26
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • S. Yin, S.X. Ding, A. Haghani, H.Y. Hao, and P. Zhang A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process J. Process Control 22 9 2012 1567 1581
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.Y.4    Zhang, P.5
  • 27
    • 84894062861 scopus 로고    scopus 로고
    • Direct projection to latent variable space for fault detection
    • J. Hu, C. Wen, P. Li, and T. Yuan Direct projection to latent variable space for fault detection J. Frankl. Inst. 351 2014 1226 1250
    • (2014) J. Frankl. Inst. , vol.351 , pp. 1226-1250
    • Hu, J.1    Wen, C.2    Li, P.3    Yuan, T.4
  • 29
    • 80052586180 scopus 로고    scopus 로고
    • On expected detection delays for alarm systems with deadbands and delay-timers
    • N.A. Adnana, I. Izadi, and T.W. Chen On expected detection delays for alarm systems with deadbands and delay-timers J. Process Control 21 9 2011 1318 1331
    • (2011) J. Process Control , vol.21 , Issue.9 , pp. 1318-1331
    • Adnana, N.A.1    Izadi, I.2    Chen, T.W.3
  • 30
    • 84874626952 scopus 로고    scopus 로고
    • Study of generalized delay-timers in alarm configuration
    • N.A. Adnana, Y. Cheng, I. Izadib, and T.W. Chen Study of generalized delay-timers in alarm configuration J. Process Control 23 3 2013 382 395
    • (2013) J. Process Control , vol.23 , Issue.3 , pp. 382-395
    • Adnana, N.A.1    Cheng, Y.2    Izadib, I.3    Chen, T.W.4
  • 33
    • 84929815763 scopus 로고    scopus 로고
    • Comparison study of multivariate statistics based key performance indicator monitoring approaches
    • K. Zhang, H.Y. Hao, Z.W. Chen, S.X. Ding, and E.L. Ding Comparison study of multivariate statistics based key performance indicator monitoring approaches 19th IFAC World Congress 2014 10628 10633
    • (2014) 19th IFAC World Congress , pp. 10628-10633
    • Zhang, K.1    Hao, H.Y.2    Chen, Z.W.3    Ding, S.X.4    Ding, E.L.5
  • 35
    • 84870278722 scopus 로고    scopus 로고
    • Probability distribution characterisation of fault detection delays and false alarms
    • S. Yang, and Q. Zhao Probability distribution characterisation of fault detection delays and false alarms IET Control Theory A 6 7 2012 953 961
    • (2012) IET Control Theory A , vol.6 , Issue.7 , pp. 953-961
    • Yang, S.1    Zhao, Q.2
  • 36
    • 0000235653 scopus 로고
    • Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification
    • G. Box Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification Ann. Math. Stat. 25 2 1954 290 302
    • (1954) Ann. Math. Stat. , vol.25 , Issue.2 , pp. 290-302
    • Box, G.1
  • 37
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J. Downs, and E. Fogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 3 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , Issue.3 , pp. 245-255
    • Downs, J.1    Fogel, E.2
  • 38
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • P. Geladi, and B.R. Kowalski Partial least-squares regression: a tutorial Anal. Chim. Acta 185 1986 1 17
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 39
    • 84951601886 scopus 로고
    • Cross validatory estimation of the number of components in factor and principal component analysis
    • S. Wold Cross validatory estimation of the number of components in factor and principal component analysis Technometrics 20 1978 397 406
    • (1978) Technometrics , vol.20 , pp. 397-406
    • Wold, S.1
  • 40
    • 0001038967 scopus 로고
    • The generalization of studnt's ratio
    • H. Hotelling The generalization of studnt's ratio Ann. Math. Stat. 2 1931 360 378
    • (1931) Ann. Math. Stat. , vol.2 , pp. 360-378
    • Hotelling, H.1
  • 42
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A.E. Hoerl, and R.W. Kennard Ridge regression: biased estimation for nonorthogonal problems Technometrics 12 1 1970 55 67
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 43
    • 0036568990 scopus 로고    scopus 로고
    • Identification of multivariable, linear, dynamic models: Comparing regression and subspace techniques
    • B.C. Juricek, D.E. Seborg, and W.E. Larimore Identification of multivariable, linear, dynamic models: comparing regression and subspace techniques Ind. Eng. Chem. Res. 41 9 2002 2185 2203
    • (2002) Ind. Eng. Chem. Res. , vol.41 , Issue.9 , pp. 2185-2203
    • Juricek, B.C.1    Seborg, D.E.2    Larimore, W.E.3
  • 44
    • 84920876717 scopus 로고    scopus 로고
    • Semi-supervised PLVR models for process monitoring with unequal sample sizes of process variables and quality variables
    • L. Zhou, J. Chen, Z. Song, and Z. Ge Semi-supervised PLVR models for process monitoring with unequal sample sizes of process variables and quality variables J. Process Control 26 2015 1 16
    • (2015) J. Process Control , vol.26 , pp. 1-16
    • Zhou, L.1    Chen, J.2    Song, Z.3    Ge, Z.4
  • 45
    • 79952573528 scopus 로고    scopus 로고
    • Analysis and generalization of fault diagnosis methods for process monitoring
    • C.F. Alcala, and S.J. Qin Analysis and generalization of fault diagnosis methods for process monitoring J. Process Control 21 3 2011 322 330
    • (2011) J. Process Control , vol.21 , Issue.3 , pp. 322-330
    • Alcala, C.F.1    Qin, S.J.2
  • 46
    • 84866122811 scopus 로고    scopus 로고
    • Fault diagnosis using contribution plots without smearing effect on non-faulty variables
    • J.L. Liu Fault diagnosis using contribution plots without smearing effect on non-faulty variables J. Process Control 22 9 2012 1609 1623
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1609-1623
    • Liu, J.L.1
  • 47
    • 0000989367 scopus 로고
    • Probability content of regions under spherical normal distributions. IV: The distribution of homogeneous and non-Homogeneous quadratic functions of normal variables
    • H. Ruben Probability content of regions under spherical normal distributions. IV: The distribution of homogeneous and non-Homogeneous quadratic functions of normal variables Ann. Math. Stat. 33 1962 542 570
    • (1962) Ann. Math. Stat. , vol.33 , pp. 542-570
    • Ruben, H.1
  • 48
    • 0039884906 scopus 로고
    • The distribution of non-negative quadratic forms in normal variables
    • J. Sheil, and I. O'Muircheartaigh The distribution of non-negative quadratic forms in normal variables J. R. Stat. Soc. Ser. C (Appl. Stat.) 26 1 1977 92 98
    • (1977) J. R. Stat. Soc. Ser. C (Appl. Stat.) , vol.26 , Issue.1 , pp. 92-98
    • Sheil, J.1    O'Muircheartaigh, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.