-
1
-
-
38449095878
-
The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis
-
PubMed
-
Rudijanto, A. (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones. 39, 86-93 PubMed
-
(2007)
Acta Med. Indones
, vol.39
, pp. 86-93
-
-
Rudijanto, A.1
-
2
-
-
84862903745
-
The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles
-
CrossRef PubMed
-
Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. and Michel, J.B. (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194-204 CrossRef PubMed
-
(2012)
Cardiovasc. Res
, vol.95
, pp. 194-204
-
-
Lacolley, P.1
Regnault, V.2
Nicoletti, A.3
Li, Z.4
Michel, J.B.5
-
3
-
-
0031456015
-
Smooth muscle migration in atherosclerosis and restenosis
-
PubMed
-
Schwartz, S.M. (1997) Smooth muscle migration in atherosclerosis and restenosis. J. Clin. Invest. 100, S87-S89 PubMed
-
(1997)
J. Clin. Invest
, vol.100
, pp. S87-S89
-
-
Schwartz, S.M.1
-
4
-
-
77953124375
-
Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation
-
CrossRef PubMed
-
Yaghini, F.A., Song, C.Y., Lavrentyev, E.N., Ghafoor, H.U., Fang, X.R., Estes, A.M., Campbell, W.B. and Malik, K.U. (2010) Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension 55, 1461-1467 CrossRef PubMed
-
(2010)
Hypertension
, vol.55
, pp. 1461-1467
-
-
Yaghini, F.A.1
Song, C.Y.2
Lavrentyev, E.N.3
Ghafoor, H.U.4
Fang, X.R.5
Estes, A.M.6
Campbell, W.B.7
Malik, K.U.8
-
5
-
-
33750602514
-
Angiotensin II signal transduction through small GTP-binding proteins: Mechanism and significance in vascular smooth muscle cells
-
CrossRef PubMed
-
Ohtsu, H., Suzuki, H., Nakashima, H., Dhobale, S., Frank, G.D., Motley, E.D. and Eguchi, S. (2006) Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 48, 534-540 CrossRef PubMed
-
(2006)
Hypertension
, vol.48
, pp. 534-540
-
-
Ohtsu, H.1
Suzuki, H.2
Nakashima, H.3
Dhobale, S.4
Frank, G.D.5
Motley, E.D.6
Eguchi, S.7
-
6
-
-
84884172868
-
Angiotensin II, NADPH oxidase, and redox signaling in the vasculature
-
CrossRef PubMed
-
Nguyen Dinh Cat, A., Montezano, A.C., Burger, D. and Touyz, R.M. (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid. Redox Signal. 19, 1110-1120 CrossRef PubMed
-
(2013)
Antioxid. Redox Signal
, vol.19
, pp. 1110-1120
-
-
Nguyen Dinh Cat, A.1
Montezano, A.C.2
Burger, D.3
Touyz, R.M.4
-
7
-
-
77749273905
-
The angiotensin II type 2 receptor in cardiovascular disease
-
CrossRef PubMed
-
Lemarie, C.A. and Schiffrin, E.L. (2010) The angiotensin II type 2 receptor in cardiovascular disease. J. Renin Angiotensin Aldosterone Syst. 11, 19-31 CrossRef PubMed
-
(2010)
J. Renin Angiotensin Aldosterone Syst
, vol.11
, pp. 19-31
-
-
Lemarie, C.A.1
Schiffrin, E.L.2
-
8
-
-
33846362954
-
Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system
-
CrossRef PubMed
-
Mehta, P.K. and Griendling, K.K. (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82-C97 CrossRef PubMed
-
(2007)
Am. J. Physiol. Cell Physiol
, vol.292
, pp. C82-C97
-
-
Mehta, P.K.1
Griendling, K.K.2
-
9
-
-
0029661428
-
P22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells
-
CrossRef PubMed
-
Ushio-Fukai, M., Zafari, A.M., Fukui, T., Ishizaka, N. and Griendling, K.K. (1996) p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 271, 23317-23321 CrossRef PubMed
-
(1996)
J. Biol. Chem
, vol.271
, pp. 23317-23321
-
-
Ushio-Fukai, M.1
Zafari, A.M.2
Fukui, T.3
Ishizaka, N.4
Griendling, K.K.5
-
10
-
-
0034648768
-
Atherosclerosis
-
CrossRef PubMed
-
Lusis, A.J. (2000) Atherosclerosis. Nature 407, 233-241 CrossRef PubMed
-
(2000)
Nature
, vol.407
, pp. 233-241
-
-
Lusis, A.J.1
-
11
-
-
84899992126
-
NRROS negatively regulates reactive oxygen species during host defence and autoimmunity
-
CrossRef PubMed
-
Noubade, R., Wong, K., Ota, N., Rutz, S., Eidenschenk, C., Valdez, P.A., Ding, J., Peng, I., Sebrell, A., Caplazi, P. et al. (2014) NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235-239 CrossRef PubMed
-
(2014)
Nature
, vol.509
, pp. 235-239
-
-
Noubade, R.1
Wong, K.2
Ota, N.3
Rutz, S.4
Eidenschenk, C.5
Valdez, P.A.6
Ding, J.7
Peng, I.8
Sebrell, A.9
Caplazi, P.10
-
12
-
-
0035844030
-
Novel gp91phox homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways
-
CrossRef PubMed
-
Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S.L., Lambeth, J.D. and Griendling, K.K. (2001) Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888-894 CrossRef PubMed
-
(2001)
Circ. Res
, vol.88
, pp. 888-894
-
-
Lassegue, B.1
Sorescu, D.2
Szocs, K.3
Yin, Q.4
Akers, M.5
Zhang, Y.6
Grant, S.L.7
Lambeth, J.D.8
Griendling, K.K.9
-
13
-
-
26244444476
-
Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases
-
CrossRef PubMed
-
Martyn, K.D., Frederick, L.M., von Loehneysen, K., Dinauer, M.C. and Knaus, U.G. (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell. Signal. 18, 69-82 CrossRef PubMed
-
(2006)
Cell. Signal
, vol.18
, pp. 69-82
-
-
Martyn, K.D.1
Frederick, L.M.2
Von Loehneysen, K.3
Dinauer, M.C.4
Knaus, U.G.5
-
14
-
-
19444365211
-
PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells
-
CrossRef PubMed
-
Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. and Monsalve, M. (2005) PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562-573 CrossRef PubMed
-
(2005)
Cardiovasc. Res
, vol.66
, pp. 562-573
-
-
Valle, I.1
Alvarez-Barrientos, A.2
Arza, E.3
Lamas, S.4
Monsalve, M.5
-
15
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
CrossRef PubMed
-
Lin, J., Handschin, C. and Spiegelman, B.M. (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370 CrossRef PubMed
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
16
-
-
0027443636
-
Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats
-
PubMed
-
Dubey, R.K., Zhang, H.Y., Reddy, S.R., Boegehold, M.A. and Kotchen, T.A. (1993) Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am. J. Physiol. 265, R726-R732 PubMed
-
(1993)
Am. J. Physiol
, vol.265
, pp. R726-R732
-
-
Dubey, R.K.1
Zhang, H.Y.2
Reddy, S.R.3
Boegehold, M.A.4
Kotchen, T.A.5
-
17
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
CrossRef PubMed
-
Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C.R., Granner, D.K. et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131-138 CrossRef PubMed
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
-
18
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
CrossRef PubMed
-
St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J.M., Rhee, J., Jager, S., Handschin, C., Zheng, K., Lin, J., Yang, W. et al. (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397-408 CrossRef PubMed
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jager, S.6
Handschin, C.7
Zheng, K.8
Lin, J.9
Yang, W.10
-
19
-
-
58449132292
-
PGC-1α is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells
-
CrossRef PubMed
-
Zhu, L., Sun, G., Zhang, H., Zhang, Y., Chen, X., Jiang, X., Jiang, X., Krauss, S., Zhang, J., Xiang, Y. and Zhang, C.Y. (2009) PGC-1α is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells. PLoS One 4, e4182 CrossRef PubMed
-
(2009)
PLoS One
, vol.4
-
-
Zhu, L.1
Sun, G.2
Zhang, H.3
Zhang, Y.4
Chen, X.5
Jiang, X.6
Jiang, X.7
Krauss, S.8
Zhang, J.9
Xiang, Y.10
Zhang, C.Y.11
-
20
-
-
84888224333
-
Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation
-
CrossRef PubMed
-
Bruder-Nascimento, T., Chinnasamy, P., Riascos-Bernal, D.F., Cau, S.B., Callera, G.E., Touyz, R.M., Tostes, R.C. and Sibinga, N.E. (2014) Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation. J. Mol. Cell. Cardiol. 66, 18-26 CrossRef PubMed
-
(2014)
J. Mol. Cell. Cardiol
, vol.66
, pp. 18-26
-
-
Bruder-Nascimento, T.1
Chinnasamy, P.2
Riascos-Bernal, D.F.3
Cau, S.B.4
Callera, G.E.5
Touyz, R.M.6
Tostes, R.C.7
Sibinga, N.E.8
-
21
-
-
0034607821
-
Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly
-
CrossRef PubMed
-
DeLeo, F.R., Burritt, J.B., Yu, L., Jesaitis, A.J., Dinauer, M.C. and Nauseef, W.M. (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J. Biol. Chem. 275, 13986-13993 CrossRef PubMed
-
(2000)
J. Biol. Chem
, vol.275
, pp. 13986-13993
-
-
DeLeo, F.R.1
Burritt, J.B.2
Yu, L.3
Jesaitis, A.J.4
Dinauer, M.C.5
Nauseef, W.M.6
-
22
-
-
0024513954
-
Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease
-
PubMed
-
Parkos, C.A., Dinauer, M.C., Jesaitis, A.J., Orkin, S.H. and Curnutte, J.T. (1989) Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73, 1416-1420 PubMed
-
(1989)
Blood
, vol.73
, pp. 1416-1420
-
-
Parkos, C.A.1
Dinauer, M.C.2
Jesaitis, A.J.3
Orkin, S.H.4
Curnutte, J.T.5
-
23
-
-
32544437847
-
Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases
-
CrossRef PubMed
-
Jara, L.J., Medina, G., Vera-Lastra, O. and Amigo, M.C. (2006) Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases. Autoimmun. Rev. 5, 195-201 CrossRef PubMed
-
(2006)
Autoimmun. Rev
, vol.5
, pp. 195-201
-
-
Jara, L.J.1
Medina, G.2
Vera-Lastra, O.3
Amigo, M.C.4
-
24
-
-
84912037650
-
B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-α signaling pathway in HeLa cells
-
CrossRef PubMed
-
Kim, H.K., Song, I.S., Lee, S.Y., Jeong, S.H., Lee, S.R., Heo, H.J., Thu, V.T., Kim, N., Ko, K.S., Rhee, B.D. et al. (2014) B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-α signaling pathway in HeLa cells. Pflugers Arch. 466, 2323-2338 CrossRef PubMed
-
(2014)
Pflugers Arch
, vol.466
, pp. 2323-2338
-
-
Kim, H.K.1
Song, I.S.2
Lee, S.Y.3
Jeong, S.H.4
Lee, S.R.5
Heo, H.J.6
Thu, V.T.7
Kim, N.8
Ko, K.S.9
Rhee, B.D.10
-
25
-
-
77956174743
-
Transient upregulation of PGC-1α diminishes cardiac ischemia tolerance via upregulation of ANT1
-
CrossRef PubMed
-
Lynn, E.G., Stevens, M.V., Wong, R.P., Carabenciov, D., Jacobson, J., Murphy, E. and Sack, M.N. (2010) Transient upregulation of PGC-1α diminishes cardiac ischemia tolerance via upregulation of ANT1. J. Mol. Cell. Cardiol. 49, 693-698 CrossRef PubMed
-
(2010)
J. Mol. Cell. Cardiol
, vol.49
, pp. 693-698
-
-
Lynn, E.G.1
Stevens, M.V.2
Wong, R.P.3
Carabenciov, D.4
Jacobson, J.5
Murphy, E.6
Sack, M.N.7
-
26
-
-
0037423717
-
Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance
-
CrossRef PubMed
-
Hammarstedt, A., Jansson, P.A., Wesslau, C., Yang, X. and Smith, U. (2003) Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem. Biophys. Res. Commun. 301, 578-582 CrossRef PubMed
-
(2003)
Biochem. Biophys. Res. Commun
, vol.301
, pp. 578-582
-
-
Hammarstedt, A.1
Jansson, P.A.2
Wesslau, C.3
Yang, X.4
Smith, U.5
-
27
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
-
CrossRef PubMed
-
Patti, M.E., Butte, A.J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R. et al. (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. U.S.A. 100, 8466-8471 CrossRef PubMed
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 8466-8471
-
-
Patti, M.E.1
Butte, A.J.2
Crunkhorn, S.3
Cusi, K.4
Berria, R.5
Kashyap, S.6
Miyazaki, Y.7
Kohane, I.8
Costello, M.9
Saccone, R.10
-
28
-
-
84874720620
-
Reactive oxygen species, Nox and angiotensin II in angiogenesis: Implications for retinopathy
-
CrossRef PubMed
-
Wilkinson-Berka, J.L., Rana, I., Armani, R. and Agrotis, A. (2013) Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin. Sci. 124, 597-615 CrossRef PubMed
-
(2013)
Clin. Sci
, vol.124
, pp. 597-615
-
-
Wilkinson-Berka, J.L.1
Rana, I.2
Armani, R.3
Agrotis, A.4
-
29
-
-
77955871829
-
PGC-1α regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload
-
CrossRef PubMed
-
Lu, Z., Xu, X., Hu, X., Fassett, J., Zhu, G., Tao, Y., Li, J., Huang, Y., Zhang, P., Zhao, B. and Chen, Y. (2010) PGC-1α regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid. Redox Signal. 13, 1011-1022 CrossRef PubMed
-
(2010)
Antioxid. Redox Signal
, vol.13
, pp. 1011-1022
-
-
Lu, Z.1
Xu, X.2
Hu, X.3
Fassett, J.4
Zhu, G.5
Tao, Y.6
Li, J.7
Huang, Y.8
Zhang, P.9
Zhao, B.10
Chen, Y.11
-
30
-
-
73949099327
-
Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging
-
CrossRef PubMed
-
Wenz, T., Rossi, S.G., Rotundo, R.L., Spiegelman, B.M. and Moraes, C.T. (2009) Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc. Natl. Acad. Sci. U.S.A. 106, 20405-20410 CrossRef PubMed
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 20405-20410
-
-
Wenz, T.1
Rossi, S.G.2
Rotundo, R.L.3
Spiegelman, B.M.4
Moraes, C.T.5
-
31
-
-
44449162751
-
Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies
-
CrossRef PubMed
-
Forstermann, U. (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med. 5, 338-349 CrossRef PubMed
-
(2008)
Nat. Clin. Pract. Cardiovasc. Med
, vol.5
, pp. 338-349
-
-
Forstermann, U.1
-
32
-
-
34547852400
-
NOX family NADPH oxidases: Not just in mammals
-
CrossRef PubMed
-
Bedard, K., Lardy, B. and Krause, K.H. (2007) NOX family NADPH oxidases: not just in mammals. Biochimie 89, 1107-1112 CrossRef PubMed
-
(2007)
Biochimie
, vol.89
, pp. 1107-1112
-
-
Bedard, K.1
Lardy, B.2
Krause, K.H.3
|