메뉴 건너뛰기




Volumn 65, Issue 2, 2015, Pages 155-166

An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records

Author keywords

Diagnosis code assignment; Label calibration; Learning to rank; Multi label text classification

Indexed keywords

CALIBRATION; CODES (SYMBOLS); COMPUTER AIDED DIAGNOSIS; DATA REDUCTION; DIAGNOSIS; FEATURE EXTRACTION; MEDICAL COMPUTING; MEDICINE; METADATA; RADIATION; RADIOLOGY; SUPERVISED LEARNING; TEXT PROCESSING;

EID: 84943587337     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2015.04.007     Document Type: Article
Times cited : (129)

References (42)
  • 1
    • 84943583596 scopus 로고    scopus 로고
    • [accessed 08.04.15]
    • Centers for Medicare and Medicaid Services ICD-10 implementation guide 2015, [accessed 08.04.15]. http://www.implementc10.noblis.org/understand_comparison/.
    • (2015) ICD-10 implementation guide
  • 5
  • 9
    • 44649122876 scopus 로고    scopus 로고
    • Automatic construction of rule-based ICD-9-CM coding systems
    • Farkas R., Szarvas G. Automatic construction of rule-based ICD-9-CM coding systems. BMC Bioinform 2008, 9(Suppl 3):S10.
    • (2008) BMC Bioinform , vol.9 , pp. S10
    • Farkas, R.1    Szarvas, G.2
  • 13
    • 73949143544 scopus 로고    scopus 로고
    • From episodes of care to diagnosis codes: automatic text categorization for medico-economic encoding
    • American Medical Informatics Association
    • Ruch P., Gobeill J., Tbahriti I., Geissbühler A. From episodes of care to diagnosis codes: automatic text categorization for medico-economic encoding. AMIA annual symposium proceedings 2008, American Medical Informatics Association.
    • (2008) AMIA annual symposium proceedings
    • Ruch, P.1    Gobeill, J.2    Tbahriti, I.3    Geissbühler, A.4
  • 15
    • 67949108237 scopus 로고    scopus 로고
    • A tutorial on multi-label classification techniques
    • de Carvalho A.C.P.L.F., Freitas A.A. A tutorial on multi-label classification techniques. Found Comput Intell 2009, 205(5):177-195.
    • (2009) Found Comput Intell , vol.205 , Issue.5 , pp. 177-195
    • de Carvalho, A.C.P.L.F.1    Freitas, A.A.2
  • 16
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read J., Pfahringer B., Holmes G., Frank E. Classifier chains for multi-label classification. Mach Learn 2011, 85(3):335-359.
    • (2011) Mach Learn , vol.85 , Issue.3 , pp. 335-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 20
    • 80052965571 scopus 로고    scopus 로고
    • Multilabel classifiers with a probabilistic thresholding strategy
    • Quevedo J., Luaces O., Bahamonde A. Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recognit 2012, 45(2):876-883.
    • (2012) Pattern Recognit , vol.45 , Issue.2 , pp. 876-883
    • Quevedo, J.1    Luaces, O.2    Bahamonde, A.3
  • 21
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 2003, 3:1289-1305.
    • (2003) J Mach Learn Res , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 23
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H., Garcia E.A. Learning from imbalanced data. IEEE Trans Knowl Data Eng 2009, 21(9):1263-1284.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 24
    • 45849122150 scopus 로고    scopus 로고
    • Optimal training sets for bayesian prediction of mesh term assignment.
    • Sohn S., Kim W., Comeau D.C., Wilbur W.J. Optimal training sets for bayesian prediction of mesh term assignment. J Am Med Inform Assoc 2008, 15(4):546-553.
    • (2008) J Am Med Inform Assoc , vol.15 , Issue.4 , pp. 546-553
    • Sohn, S.1    Kim, W.2    Comeau, D.C.3    Wilbur, W.J.4
  • 25
    • 84893437311 scopus 로고    scopus 로고
    • Supervised extraction of diagnosis codes from EMRs: role of feature selection, data selection, and probabilistic thresholding
    • Rios A., Kavuluru R. Supervised extraction of diagnosis codes from EMRs: role of feature selection, data selection, and probabilistic thresholding. 2013 IEEE international conference on healthcare informatics (ICHI), IEEE 2013, 66-73.
    • (2013) 2013 IEEE international conference on healthcare informatics (ICHI), IEEE , pp. 66-73
    • Rios, A.1    Kavuluru, R.2
  • 29
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning: vector space models of semantics
    • Turney P.D., Pantel P., et al. From frequency to meaning: vector space models of semantics. J Artif Intell Res 2010, 37(1):141-188.
    • (2010) J Artif Intell Res , vol.37 , Issue.1 , pp. 141-188
    • Turney, P.D.1    Pantel, P.2
  • 30
    • 77955287813 scopus 로고    scopus 로고
    • An overview of metamap: historical perspective and recent advances
    • Aronson A.R., Lang F.-M. An overview of metamap: historical perspective and recent advances. J Am Med Inform Assoc 2010, 17(3):229-236.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.-M.2
  • 31
    • 0842283365 scopus 로고    scopus 로고
    • The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text
    • Rindflesch T.C., Fiszman M. The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J Biomed Inform 2003, 36(6):462-477.
    • (2003) J Biomed Inform , vol.36 , Issue.6 , pp. 462-477
    • Rindflesch, T.C.1    Fiszman, M.2
  • 33
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27:1-27, software available at [accessed 08.04.15]
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2:27:1-27:27. software available at http://www.csie.ntu.edu.tw/cjlin/libsvm [accessed 08.04.15].
    • (2011) ACM Trans Intell Syst Technol , vol.2 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 35
    • 69249119464 scopus 로고    scopus 로고
    • Learning to rank for information retrieval
    • Liu T.-Y. Learning to rank for information retrieval. Found Trends Inform Retrieval 2009, 3(3):225-331.
    • (2009) Found Trends Inform Retrieval , vol.3 , Issue.3 , pp. 225-331
    • Liu, T.-Y.1
  • 36
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of IR techniques
    • Järvelin K., Kekälainen J. Cumulated gain-based evaluation of IR techniques. ACM Trans Inform Syst 2002, 20(4):422-446.
    • (2002) ACM Trans Inform Syst , vol.20 , Issue.4 , pp. 422-446
    • Järvelin, K.1    Kekälainen, J.2
  • 37
    • 84884919794 scopus 로고    scopus 로고
    • Unsupervised medical subject heading assignment using output label co-occurrence statistics and semantic predications
    • Springer
    • Kavuluru R., He Z. Unsupervised medical subject heading assignment using output label co-occurrence statistics and semantic predications. Natural Language Processing and Information Systems, NLDB 2013, 176-188. Springer.
    • (2013) Natural Language Processing and Information Systems, NLDB , pp. 176-188
    • Kavuluru, R.1    He, Z.2
  • 38
    • 61949432274 scopus 로고    scopus 로고
    • Empirical distributional semantics: methods and biomedical applications
    • Cohen T., Widdows D. Empirical distributional semantics: methods and biomedical applications. J Biomed Inform 2009, 42(2):390-405.
    • (2009) J Biomed Inform , vol.42 , Issue.2 , pp. 390-405
    • Cohen, T.1    Widdows, D.2
  • 39
    • 77949262334 scopus 로고    scopus 로고
    • Reflective random indexing and indirect inference: a scalable method for discovery of implicit connections
    • Cohen T., Schvaneveldt R., Widdows D. Reflective random indexing and indirect inference: a scalable method for discovery of implicit connections. J Biomed Inform 2010, 43(2):240-256.
    • (2010) J Biomed Inform , vol.43 , Issue.2 , pp. 240-256
    • Cohen, T.1    Schvaneveldt, R.2    Widdows, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.