메뉴 건너뛰기




Volumn , Issue , 2013, Pages 511-516

Using structured EHR data and SVM to support ICD-9-CM coding

Author keywords

Electronic health record; Feature selection; Filter method; ICD 9 CM coding; Support vector machines

Indexed keywords

CODES (SYMBOLS); DATA HANDLING; FEATURE EXTRACTION; HEALTH; HEALTH CARE; LEARNING ALGORITHMS; MEDICINE; NATURAL LANGUAGE PROCESSING SYSTEMS; RECORDS MANAGEMENT;

EID: 84893441737     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICHI.2013.79     Document Type: Conference Paper
Times cited : (34)

References (21)
  • 3
    • 77952977592 scopus 로고    scopus 로고
    • Liberating health data for clinical research applications
    • Feb
    • J. J. Nadler and G. J. Downing, "Liberating health data for clinical research applications" Science Translational Medicine vol. 2 no. 18 pp. 18cm6-18cm6, Feb. 2010.
    • (2010) Science Translational Medicine , vol.2 , Issue.18
    • Nadler, J.J.1    Downing, G.J.2
  • 5
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: A review of recent research
    • Jan
    • S. M. Meystre, G. K. Savova, K. C. Kipper-Schuler, and J. F. Hurdle, "Extracting information from textual documents in the electronic health record: A review of recent research" Yearbook of Medical Informatics, pp. 138-154, Jan. 2008.
    • (2008) Yearbook of Medical Informatics , pp. 138-154
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 8
    • 6944229470 scopus 로고    scopus 로고
    • Delving into computerassisted coding (AHIMA practice brief)
    • AHIMA computer-assisted coding e-HIM work group
    • AHIMA computer-assisted coding e-HIM work group, "Delving into computerassisted coding (AHIMA practice brief)," Journal of AHIMA, vol. 75, p. 48A-48H, 2004.
    • (2004) Journal of AHIMA , vol.75
  • 10
    • 44649122876 scopus 로고    scopus 로고
    • Automatic construction of rule-based ICD-9-CM coding systems
    • Jan
    • R. Farkas and G. Szarvas, "Automatic construction of rule-based ICD-9-CM coding systems" BMC Bioinformatics, vol. 9, no. Suppl 3, p. S10, Jan. 2008.
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 3
    • Farkas, R.1    Szarvas, G.2
  • 11
    • 33747880992 scopus 로고    scopus 로고
    • Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques
    • S. V. S. Pakhomov, J. D. Buntrock, and C. G. Chute, "Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques" Journal of the American Medical Informatics Association, pp. 516-525, 2006.
    • (2006) Journal of the American Medical Informatics Association , pp. 516-525
    • Pakhomov, S.V.S.1    Buntrock, J.D.2    Chute, C.G.3
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks" Machine Learning, vol. 20, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection" Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy" Journal of Machine Learning Research, vol. 5, pp. 1205-1224, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 21
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, "Conditional likelihood maximisation: A unifying framework for information theoretic feature selection" Journal of Machine Learning Research, vol. 13, pp. 27-66, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Luján, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.