메뉴 건너뛰기




Volumn 66, Issue , 2015, Pages 252-257

ITIS-PseKNC: Identification of Translation Initiation Site in human genes using pseudo k-tuple nucleotides composition

Author keywords

DNA; DNC; Jackknife test; PseDNC; SVM; Translation Initiation Site

Indexed keywords

ARTIFICIAL INTELLIGENCE; AUTOMATION; COMPUTATION THEORY; COMPUTATIONAL METHODS; DNA; GENES; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; NUCLEOTIDES; NUMERICAL METHODS; PROTEINS; SUPPORT VECTOR MACHINES;

EID: 84943169413     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2015.09.010     Document Type: Article
Times cited : (33)

References (72)
  • 1
    • 34547852234 scopus 로고    scopus 로고
    • Translation initiation site prediction on a genomic scale: beauty in simplicity
    • Saeys Y., et al. Translation initiation site prediction on a genomic scale: beauty in simplicity. Bioinformatics 2007, 23(13):i418-i423.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. i418-i423
    • Saeys, Y.1
  • 2
    • 84921500317 scopus 로고    scopus 로고
    • ITIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • Chen W., et al. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem. 2014, 462:76-83.
    • (2014) Anal. Biochem. , vol.462 , pp. 76-83
    • Chen, W.1
  • 3
    • 75149196287 scopus 로고    scopus 로고
    • The mechanism of eukaryotic translation initiation and principles of its regulation
    • Jackson R.J., Hellen C.U., Pestova T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010, 11(2):113-127.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , Issue.2 , pp. 113-127
    • Jackson, R.J.1    Hellen, C.U.2    Pestova, T.V.3
  • 4
    • 0242440118 scopus 로고    scopus 로고
    • Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm
    • Wang Y., Ou H., Guo F. Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm. J. Comput. Biol. 2003, 10(5):699-708.
    • (2003) J. Comput. Biol. , vol.10 , Issue.5 , pp. 699-708
    • Wang, Y.1    Ou, H.2    Guo, F.3
  • 5
    • 33645635990 scopus 로고    scopus 로고
    • An unsupervised classification scheme for improving predictions of prokaryotic TIS
    • Tech M., Meinicke P. An unsupervised classification scheme for improving predictions of prokaryotic TIS. BMC Bioinform. 2006, 7(1):121.
    • (2006) BMC Bioinform. , vol.7 , Issue.1 , pp. 121
    • Tech, M.1    Meinicke, P.2
  • 6
    • 84943177993 scopus 로고    scopus 로고
    • Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis
    • Ismb.Citeseer
    • A.G. Pedersen, H. Nielsen, Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis, 1997, Ismb.Citeseer.
    • (1997)
    • Pedersen, A.G.1    Nielsen, H.2
  • 7
    • 0036184759 scopus 로고    scopus 로고
    • Translation initiation start prediction in human cDNAs with high accuracy
    • Hatzigeorgiou A.G. Translation initiation start prediction in human cDNAs with high accuracy. Bioinformatics 2002, 18(2):343-350.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 343-350
    • Hatzigeorgiou, A.G.1
  • 8
    • 0031855858 scopus 로고    scopus 로고
    • Assessing protein coding region integrity in cDNA sequencing projects
    • Salamov A.A., Nishikawa T., Swindells M.B. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 1998, 14(5):384-390.
    • (1998) Bioinformatics , vol.14 , Issue.5 , pp. 384-390
    • Salamov, A.A.1    Nishikawa, T.2    Swindells, M.B.3
  • 9
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Zien A., et al. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 2000, 16(9):799-807.
    • (2000) Bioinformatics , vol.16 , Issue.9 , pp. 799-807
    • Zien, A.1
  • 10
    • 23844478874 scopus 로고    scopus 로고
    • A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs
    • Li H., Jiang T. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs. J. Comput. Biol. 2005, 12(6):702-718.
    • (2005) J. Comput. Biol. , vol.12 , Issue.6 , pp. 702-718
    • Li, H.1    Jiang, T.2
  • 11
    • 84885156363 scopus 로고    scopus 로고
    • ISNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
    • Xu Y., et al. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 2013, 1:e171.
    • (2013) PeerJ , vol.1 , pp. e171
    • Xu, Y.1
  • 12
    • 84905982402 scopus 로고    scopus 로고
    • INitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y., Wen X., Wen L.S., Wu L.Y., Deng N.Y., Chou K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014, 9(8):e105018.
    • (2014) PLoS One , vol.9 , Issue.8 , pp. e105018
    • Xu, Y.1    Wen, X.2    Wen, L.S.3    Wu, L.Y.4    Deng, N.Y.5    Chou, K.C.6
  • 13
    • 65649105512 scopus 로고    scopus 로고
    • Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform
    • Qiu J.D., et al. Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform. Anal. Biochem. 2009, 390(1):68-73.
    • (2009) Anal. Biochem. , vol.390 , Issue.1 , pp. 68-73
    • Qiu, J.D.1
  • 14
    • 84977782506 scopus 로고    scopus 로고
    • Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach
    • ahead-of-print
    • Xu R., et al. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J. Biomol. Struct. Dyn. 2014, 1-11. ahead-of-print.
    • (2014) J. Biomol. Struct. Dyn. , pp. 1-11
    • Xu, R.1
  • 15
    • 84923361176 scopus 로고    scopus 로고
    • IDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition
    • Liu Z., et al. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem. 2015, 474:69-77.
    • (2015) Anal. Biochem. , vol.474 , pp. 69-77
    • Liu, Z.1
  • 16
    • 84928722799 scopus 로고    scopus 로고
    • IPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • Jia J., et al. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol. 2015, 377:47-56.
    • (2015) J. Theor. Biol. , vol.377 , pp. 47-56
    • Jia, J.1
  • 17
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition
    • Chou K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273(1):236-247.
    • (2011) J. Theor. Biol. , vol.273 , Issue.1 , pp. 236-247
    • Chou, K.C.1
  • 18
    • 84945459590 scopus 로고    scopus 로고
    • TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition
    • He X., et al. TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition. J. Membr. Biol. 2015, 1-10.
    • (2015) J. Membr. Biol. , pp. 1-10
    • He, X.1
  • 19
    • 84956620000 scopus 로고    scopus 로고
    • RepRNA: a web server for generating various feature vectors of RNA sequences
    • Liu B., et al. repRNA: a web server for generating various feature vectors of RNA sequences. Mol. Genet. Genom. 2015, 1-9.
    • (2015) Mol. Genet. Genom. , pp. 1-9
    • Liu, B.1
  • 20
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition
    • Chou K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Bioinform. 2001, 43(3):246-255.
    • (2001) Proteins: Struct. Funct. Bioinform. , vol.43 , Issue.3 , pp. 246-255
    • Chou, K.C.1
  • 21
    • 84941783146 scopus 로고    scopus 로고
    • Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
    • Chen W., Lin H., Chou K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst. 2015, 11:2620-2634.
    • (2015) Mol. Biosyst. , vol.11 , pp. 2620-2634
    • Chen, W.1    Lin, H.2    Chou, K.C.3
  • 22
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
    • Du P., Gu S., Jiao Y. PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int. J. Mol. Sci. 2014, 15(3):3495-3506.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.3 , pp. 3495-3506
    • Du, P.1    Gu, S.2    Jiao, Y.3
  • 23
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions
    • Du P., et al. PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions. Anal. Biochem. 2012, 425(2):117-119.
    • (2012) Anal. Biochem. , vol.425 , Issue.2 , pp. 117-119
    • Du, P.1
  • 24
    • 84875576158 scopus 로고    scopus 로고
    • Propy: a tool to generate various modes of Chou's PseAAC
    • Cao D.S., Xu Q.S., Liang Y.Z. propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics 2013, 29(7):960-962.
    • (2013) Bioinformatics , vol.29 , Issue.7 , pp. 960-962
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3
  • 25
    • 84922393208 scopus 로고    scopus 로고
    • Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM
    • Li L., et al. Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM. BMC bioinform. 2014, 15(1):340.
    • (2014) BMC bioinform. , vol.15 , Issue.1 , pp. 340
    • Li, L.1
  • 26
    • 84885640993 scopus 로고    scopus 로고
    • IHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition
    • Feng P.M., et al. iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem. 2013, 442(1):118-125.
    • (2013) Anal. Biochem. , vol.442 , Issue.1 , pp. 118-125
    • Feng, P.M.1
  • 27
    • 84908544636 scopus 로고    scopus 로고
    • Molecular science for drug development and biomedicine
    • Zhong W.Z., Zhou S.F. Molecular science for drug development and biomedicine. Int. J. Mol. Sci. 2014, 15(11):20072-20078.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.11 , pp. 20072-20078
    • Zhong, W.Z.1    Zhou, S.F.2
  • 28
    • 70350437815 scopus 로고    scopus 로고
    • Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition
    • Lin H., et al. Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition. Acta Biotheor. 2009, 57(3):321-330.
    • (2009) Acta Biotheor. , vol.57 , Issue.3 , pp. 321-330
    • Lin, H.1
  • 29
    • 84908072570 scopus 로고    scopus 로고
    • Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou' s general PseAAC
    • Dehzangi A., et al. Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou' s general PseAAC. J. Theor. Biol. 2015, 364:284-294.
    • (2015) J. Theor. Biol. , vol.364 , pp. 284-294
    • Dehzangi, A.1
  • 30
    • 84908628104 scopus 로고    scopus 로고
    • Prediction of β-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine
    • Kumar R., et al. Prediction of β-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine. J. Theor. Biol. 2015, 365:96-103.
    • (2015) J. Theor. Biol. , vol.365 , pp. 96-103
    • Kumar, R.1
  • 31
    • 84899962803 scopus 로고    scopus 로고
    • Chou' s pseudo amino acid composition improves sequence-based antifreeze protein prediction
    • Mondal S., Pai P.P. Chou' s pseudo amino acid composition improves sequence-based antifreeze protein prediction. Journal of theoretical biology 2014, 356:30-35.
    • (2014) Journal of theoretical biology , vol.356 , pp. 30-35
    • Mondal, S.1    Pai, P.P.2
  • 32
    • 84939476364 scopus 로고    scopus 로고
    • MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier
    • btv212
    • Wang X., et al. MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier. Bioinformatics 2015, 31:2639-2645. btv212.
    • (2015) Bioinformatics , vol.31 , pp. 2639-2645
    • Wang, X.1
  • 33
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition
    • Chen W., et al. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem. 2014, 456:53-60.
    • (2014) Anal. Biochem. , vol.456 , pp. 53-60
    • Chen, W.1
  • 34
    • 84922387565 scopus 로고    scopus 로고
    • PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions
    • btu602
    • Chen W., et al. PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics 2014, 31(1):119-120. btu602.
    • (2014) Bioinformatics , vol.31 , Issue.1 , pp. 119-120
    • Chen, W.1
  • 35
    • 84906975785 scopus 로고    scopus 로고
    • IDNA-Prot| dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
    • Liu B., et al. iDNA-Prot| dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014, 9(9):e106691.
    • (2014) PLoS One , vol.9 , Issue.9 , pp. e106691
    • Liu, B.1
  • 36
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microRNA precursors with a pseudo structure status composition approach
    • Liu B., et al. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One 2015, 10:e0121501.
    • (2015) PLoS One , vol.10 , pp. e0121501
    • Liu, B.1
  • 37
    • 84954388556 scopus 로고    scopus 로고
    • IMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach
    • ahead-of-print
    • Liu B., et al. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J. Biomol. Struct. Dyn. 2015, 1-13. ahead-of-print.
    • (2015) J. Biomol. Struct. Dyn. , pp. 1-13
    • Liu, B.1
  • 38
    • 84927712367 scopus 로고    scopus 로고
    • RepDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
    • Liu B., et al. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 2015, 31(8):1307-1309.
    • (2015) Bioinformatics , vol.31 , Issue.8 , pp. 1307-1309
    • Liu, B.1
  • 39
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • gkv458
    • Liu B., et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015, gkv458.
    • (2015) Nucleic Acids Res.
    • Liu, B.1
  • 40
    • 84876053736 scopus 로고    scopus 로고
    • IRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
    • gks1450
    • Chen W., et al. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res. 2013, 41(6). gks1450.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.6
    • Chen, W.1
  • 41
    • 84902186435 scopus 로고    scopus 로고
    • ISS-PseDNC: identifying splicing sites using pseudo dinucleotide composition
    • Chen W., et al. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int. 2014, 2014:12.
    • (2014) BioMed Res. Int. , vol.2014 , pp. 12
    • Chen, W.1
  • 42
    • 84907236093 scopus 로고    scopus 로고
    • Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions
    • Feng P., Jiang N., Liu N. Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions. Sci. World J. 2014, 2014:4.
    • (2014) Sci. World J. , vol.2014 , pp. 4
    • Feng, P.1    Jiang, N.2    Liu, N.3
  • 43
    • 84896463976 scopus 로고    scopus 로고
    • INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • btu083
    • Guo S.H., et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 2014, 30(11):1522-1529. btu083.
    • (2014) Bioinformatics , vol.30 , Issue.11 , pp. 1522-1529
    • Guo, S.H.1
  • 44
    • 84920993500 scopus 로고    scopus 로고
    • IORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition
    • Li W.C., et al. iORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition. Chemom. Intell. Lab. Syst. 2015, 141:100-106.
    • (2015) Chemom. Intell. Lab. Syst. , vol.141 , pp. 100-106
    • Li, W.C.1
  • 45
    • 84941040066 scopus 로고    scopus 로고
    • IPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • Lin H., et al. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 2014, 42(21):12961-12972.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.21 , pp. 12961-12972
    • Lin, H.1
  • 46
    • 84892958175 scopus 로고    scopus 로고
    • IRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components
    • Qiu W.R., Xiao X., Chou K.C. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci. 2014, 15(2):1746-1766.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.2 , pp. 1746-1766
    • Qiu, W.R.1    Xiao, X.2    Chou, K.C.3
  • 47
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • Hayat M., Khan A. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol. 2011, 271(1):10-17.
    • (2011) J. Theor. Biol. , vol.271 , Issue.1 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 48
    • 84876905280 scopus 로고    scopus 로고
    • ANN approach for weather prediction using back propagation
    • Devi C.J., et al. ANN approach for weather prediction using back propagation. Int. J. Eng. Trends Technol. 2012, 3(1):19-23.
    • (2012) Int. J. Eng. Trends Technol. , vol.3 , Issue.1 , pp. 19-23
    • Devi, C.J.1
  • 49
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural netw. 1990, 3(1):109-118.
    • (1990) Neural netw. , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 50
    • 33746261915 scopus 로고    scopus 로고
    • Optimizing the performance of probabilistic neural networks in a bioinformatics task
    • V. Georgiou, et al., Optimizing the performance of probabilistic neural networks in a bioinformatics task, in: Proceedings of the EUNITE 2004 Conference, 2004.
    • (2004) Proceedings of the EUNITE 2004 Conference
    • Georgiou, V.1
  • 51
    • 84911416290 scopus 로고    scopus 로고
    • Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model
    • Khan Z.U., Hayat M., Khan M.A. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model. J. Theor. Biol. 2015, 365:197-203.
    • (2015) J. Theor. Biol. , vol.365 , pp. 197-203
    • Khan, Z.U.1    Hayat, M.2    Khan, M.A.3
  • 52
    • 84894414324 scopus 로고    scopus 로고
    • Neural network based ACC for optimized safety and comfort
    • Cherian M., Sathiyan S.P. Neural network based ACC for optimized safety and comfort. Int. J. Comput. Appl. 2012, 42(14):1-4.
    • (2012) Int. J. Comput. Appl. , vol.42 , Issue.14 , pp. 1-4
    • Cherian, M.1    Sathiyan, S.P.2
  • 53
    • 55949091513 scopus 로고    scopus 로고
    • Kernel regression networks with local structural information and covariance volume adaptation
    • Goulermas J.Y., Liatsis P., Zeng X.J. Kernel regression networks with local structural information and covariance volume adaptation. Neurocomputing 2008, 72(1):257-261.
    • (2008) Neurocomputing , vol.72 , Issue.1 , pp. 257-261
    • Goulermas, J.Y.1    Liatsis, P.2    Zeng, X.J.3
  • 54
    • 84943139615 scopus 로고    scopus 로고
    • http://www.mathworks.com/help/nnet/ug/generalized-regression-neural-networks.html.
  • 55
    • 84858833657 scopus 로고    scopus 로고
    • Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou's PseAAC
    • Hayat M., Khan A. Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou's PseAAC. Protein Pept. Lett. 2012, 19(4):411-421.
    • (2012) Protein Pept. Lett. , vol.19 , Issue.4 , pp. 411-421
    • Hayat, M.1    Khan, A.2
  • 56
    • 0030083476 scopus 로고    scopus 로고
    • Acidophilic bacteria-their potential mining and environmental applications
    • Jordan M., McGinness S., Phillips C. Acidophilic bacteria-their potential mining and environmental applications. Miner. Eng. 1996, 9(2):169-181.
    • (1996) Miner. Eng. , vol.9 , Issue.2 , pp. 169-181
    • Jordan, M.1    McGinness, S.2    Phillips, C.3
  • 57
    • 84940523358 scopus 로고    scopus 로고
    • PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine
    • Hayat M., Tahir M. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine. Mol. Biosyst. 2015, 11:2255-2262.
    • (2015) Mol. Biosyst. , vol.11 , pp. 2255-2262
    • Hayat, M.1    Tahir, M.2
  • 59
    • 84892457142 scopus 로고    scopus 로고
    • Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces
    • Hayat M., Tahir M., Khan S.A. Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces. J. Theor. Biol. 2014, 346:8-15.
    • (2014) J. Theor. Biol. , vol.346 , pp. 8-15
    • Hayat, M.1    Tahir, M.2    Khan, S.A.3
  • 60
    • 84904506417 scopus 로고    scopus 로고
    • Discriminating of protein structure classes by incorporating pseudo average chemical shift and support vector machine
    • Hayat M., Iqbal N. Discriminating of protein structure classes by incorporating pseudo average chemical shift and support vector machine. J. Comput. Methods Programs Biomed. 2014, 116(3):184-192.
    • (2014) J. Comput. Methods Programs Biomed. , vol.116 , Issue.3 , pp. 184-192
    • Hayat, M.1    Iqbal, N.2
  • 61
    • 84873575437 scopus 로고    scopus 로고
    • ISNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • Xu Y., et al. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013, 8(2):e55844.
    • (2013) PLoS One , vol.8 , Issue.2 , pp. e55844
    • Xu, Y.1
  • 62
    • 0035030201 scopus 로고    scopus 로고
    • Using subsite coupling to predict signal peptides
    • Chou K.C. Using subsite coupling to predict signal peptides. Protein Eng. 2001, 14(2):75-79.
    • (2001) Protein Eng. , vol.14 , Issue.2 , pp. 75-79
    • Chou, K.C.1
  • 63
    • 84930573120 scopus 로고    scopus 로고
    • IUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model
    • ahead-of-print
    • Qiu W.-R., et al. iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. J. Biomol. Struct. Dyn. 2014, 1-12. ahead-of-print.
    • (2014) J. Biomol. Struct. Dyn. , pp. 1-12
    • Qiu, W.-R.1
  • 64
    • 79953316878 scopus 로고    scopus 로고
    • ILoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
    • Chou K.-C., Wu Z.-C., Xiao X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One 2011, 6(3):e18258.
    • (2011) PLoS One , vol.6 , Issue.3 , pp. e18258
    • Chou, K.-C.1    Wu, Z.-C.2    Xiao, X.3
  • 65
    • 84855641685 scopus 로고    scopus 로고
    • ILoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou K.-C., Wu Z.-C., Xiao X. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst. 2012, 8(2):629-641.
    • (2012) Mol. Biosyst. , vol.8 , Issue.2 , pp. 629-641
    • Chou, K.-C.1    Wu, Z.-C.2    Xiao, X.3
  • 66
    • 84875074764 scopus 로고    scopus 로고
    • IAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
    • Xiao X., et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 2013, 436(2):168-177.
    • (2013) Anal. Biochem. , vol.436 , Issue.2 , pp. 168-177
    • Xiao, X.1
  • 67
    • 84877758233 scopus 로고    scopus 로고
    • Some remarks on predicting multi-label attributes in molecular biosystems
    • Chou K.-C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst. 2013, 9(6):1092-1100.
    • (2013) Mol. Biosyst. , vol.9 , Issue.6 , pp. 1092-1100
    • Chou, K.-C.1
  • 68
    • 84876678050 scopus 로고    scopus 로고
    • WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids
    • Hayat M., Khan A. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids. J. Amino Acid 2013, 44(5):1317-1328.
    • (2013) J. Amino Acid , vol.44 , Issue.5 , pp. 1317-1328
    • Hayat, M.1    Khan, A.2
  • 69
    • 84944276251 scopus 로고    scopus 로고
    • Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou's general PseAAC
    • Ahmad S., Kabir M., Hayat M. Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou's general PseAAC. Comput. Methods Programs Biomed. 2015.
    • (2015) Comput. Methods Programs Biomed.
    • Ahmad, S.1    Kabir, M.2    Hayat, M.3
  • 70
    • 84868128310 scopus 로고    scopus 로고
    • INuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties
    • Chen W., et al. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One 2012, 7(10):e47843.
    • (2012) PLoS One , vol.7 , Issue.10 , pp. e47843
    • Chen, W.1
  • 71
    • 84903592187 scopus 로고    scopus 로고
    • ICTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
    • Ding H., et al. iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int. 2014, 2014:1-10.
    • (2014) BioMed Res. Int. , vol.2014 , pp. 1-10
    • Ding, H.1
  • 72
    • 84905982402 scopus 로고    scopus 로고
    • INitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y., et al. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014, 9(8):e105018.
    • (2014) PLoS One , vol.9 , Issue.8 , pp. e105018
    • Xu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.