-
1
-
-
34547852234
-
Translation initiation site prediction on a genomic scale: beauty in simplicity
-
Saeys Y., et al. Translation initiation site prediction on a genomic scale: beauty in simplicity. Bioinformatics 2007, 23(13):i418-i423.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. i418-i423
-
-
Saeys, Y.1
-
2
-
-
84921500317
-
ITIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
-
Chen W., et al. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem. 2014, 462:76-83.
-
(2014)
Anal. Biochem.
, vol.462
, pp. 76-83
-
-
Chen, W.1
-
3
-
-
75149196287
-
The mechanism of eukaryotic translation initiation and principles of its regulation
-
Jackson R.J., Hellen C.U., Pestova T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010, 11(2):113-127.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, Issue.2
, pp. 113-127
-
-
Jackson, R.J.1
Hellen, C.U.2
Pestova, T.V.3
-
4
-
-
0242440118
-
Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm
-
Wang Y., Ou H., Guo F. Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm. J. Comput. Biol. 2003, 10(5):699-708.
-
(2003)
J. Comput. Biol.
, vol.10
, Issue.5
, pp. 699-708
-
-
Wang, Y.1
Ou, H.2
Guo, F.3
-
5
-
-
33645635990
-
An unsupervised classification scheme for improving predictions of prokaryotic TIS
-
Tech M., Meinicke P. An unsupervised classification scheme for improving predictions of prokaryotic TIS. BMC Bioinform. 2006, 7(1):121.
-
(2006)
BMC Bioinform.
, vol.7
, Issue.1
, pp. 121
-
-
Tech, M.1
Meinicke, P.2
-
6
-
-
84943177993
-
Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis
-
Ismb.Citeseer
-
A.G. Pedersen, H. Nielsen, Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis, 1997, Ismb.Citeseer.
-
(1997)
-
-
Pedersen, A.G.1
Nielsen, H.2
-
7
-
-
0036184759
-
Translation initiation start prediction in human cDNAs with high accuracy
-
Hatzigeorgiou A.G. Translation initiation start prediction in human cDNAs with high accuracy. Bioinformatics 2002, 18(2):343-350.
-
(2002)
Bioinformatics
, vol.18
, Issue.2
, pp. 343-350
-
-
Hatzigeorgiou, A.G.1
-
8
-
-
0031855858
-
Assessing protein coding region integrity in cDNA sequencing projects
-
Salamov A.A., Nishikawa T., Swindells M.B. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 1998, 14(5):384-390.
-
(1998)
Bioinformatics
, vol.14
, Issue.5
, pp. 384-390
-
-
Salamov, A.A.1
Nishikawa, T.2
Swindells, M.B.3
-
9
-
-
0033670134
-
Engineering support vector machine kernels that recognize translation initiation sites
-
Zien A., et al. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 2000, 16(9):799-807.
-
(2000)
Bioinformatics
, vol.16
, Issue.9
, pp. 799-807
-
-
Zien, A.1
-
10
-
-
23844478874
-
A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs
-
Li H., Jiang T. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs. J. Comput. Biol. 2005, 12(6):702-718.
-
(2005)
J. Comput. Biol.
, vol.12
, Issue.6
, pp. 702-718
-
-
Li, H.1
Jiang, T.2
-
11
-
-
84885156363
-
ISNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
-
Xu Y., et al. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ 2013, 1:e171.
-
(2013)
PeerJ
, vol.1
, pp. e171
-
-
Xu, Y.1
-
12
-
-
84905982402
-
INitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
-
Xu Y., Wen X., Wen L.S., Wu L.Y., Deng N.Y., Chou K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014, 9(8):e105018.
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e105018
-
-
Xu, Y.1
Wen, X.2
Wen, L.S.3
Wu, L.Y.4
Deng, N.Y.5
Chou, K.C.6
-
13
-
-
65649105512
-
Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform
-
Qiu J.D., et al. Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform. Anal. Biochem. 2009, 390(1):68-73.
-
(2009)
Anal. Biochem.
, vol.390
, Issue.1
, pp. 68-73
-
-
Qiu, J.D.1
-
14
-
-
84977782506
-
Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach
-
ahead-of-print
-
Xu R., et al. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J. Biomol. Struct. Dyn. 2014, 1-11. ahead-of-print.
-
(2014)
J. Biomol. Struct. Dyn.
, pp. 1-11
-
-
Xu, R.1
-
15
-
-
84923361176
-
IDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition
-
Liu Z., et al. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem. 2015, 474:69-77.
-
(2015)
Anal. Biochem.
, vol.474
, pp. 69-77
-
-
Liu, Z.1
-
16
-
-
84928722799
-
IPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
-
Jia J., et al. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol. 2015, 377:47-56.
-
(2015)
J. Theor. Biol.
, vol.377
, pp. 47-56
-
-
Jia, J.1
-
17
-
-
79951518208
-
Some remarks on protein attribute prediction and pseudo amino acid composition
-
Chou K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273(1):236-247.
-
(2011)
J. Theor. Biol.
, vol.273
, Issue.1
, pp. 236-247
-
-
Chou, K.C.1
-
18
-
-
84945459590
-
TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition
-
He X., et al. TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition. J. Membr. Biol. 2015, 1-10.
-
(2015)
J. Membr. Biol.
, pp. 1-10
-
-
He, X.1
-
19
-
-
84956620000
-
RepRNA: a web server for generating various feature vectors of RNA sequences
-
Liu B., et al. repRNA: a web server for generating various feature vectors of RNA sequences. Mol. Genet. Genom. 2015, 1-9.
-
(2015)
Mol. Genet. Genom.
, pp. 1-9
-
-
Liu, B.1
-
20
-
-
0035874091
-
Prediction of protein cellular attributes using pseudo-amino acid composition
-
Chou K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Bioinform. 2001, 43(3):246-255.
-
(2001)
Proteins: Struct. Funct. Bioinform.
, vol.43
, Issue.3
, pp. 246-255
-
-
Chou, K.C.1
-
21
-
-
84941783146
-
Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
-
Chen W., Lin H., Chou K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst. 2015, 11:2620-2634.
-
(2015)
Mol. Biosyst.
, vol.11
, pp. 2620-2634
-
-
Chen, W.1
Lin, H.2
Chou, K.C.3
-
22
-
-
84895429516
-
PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
-
Du P., Gu S., Jiao Y. PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int. J. Mol. Sci. 2014, 15(3):3495-3506.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, Issue.3
, pp. 3495-3506
-
-
Du, P.1
Gu, S.2
Jiao, Y.3
-
23
-
-
84859932176
-
PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions
-
Du P., et al. PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions. Anal. Biochem. 2012, 425(2):117-119.
-
(2012)
Anal. Biochem.
, vol.425
, Issue.2
, pp. 117-119
-
-
Du, P.1
-
24
-
-
84875576158
-
Propy: a tool to generate various modes of Chou's PseAAC
-
Cao D.S., Xu Q.S., Liang Y.Z. propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics 2013, 29(7):960-962.
-
(2013)
Bioinformatics
, vol.29
, Issue.7
, pp. 960-962
-
-
Cao, D.S.1
Xu, Q.S.2
Liang, Y.Z.3
-
25
-
-
84922393208
-
Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM
-
Li L., et al. Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM. BMC bioinform. 2014, 15(1):340.
-
(2014)
BMC bioinform.
, vol.15
, Issue.1
, pp. 340
-
-
Li, L.1
-
26
-
-
84885640993
-
IHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition
-
Feng P.M., et al. iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem. 2013, 442(1):118-125.
-
(2013)
Anal. Biochem.
, vol.442
, Issue.1
, pp. 118-125
-
-
Feng, P.M.1
-
27
-
-
84908544636
-
Molecular science for drug development and biomedicine
-
Zhong W.Z., Zhou S.F. Molecular science for drug development and biomedicine. Int. J. Mol. Sci. 2014, 15(11):20072-20078.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, Issue.11
, pp. 20072-20078
-
-
Zhong, W.Z.1
Zhou, S.F.2
-
28
-
-
70350437815
-
Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition
-
Lin H., et al. Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition. Acta Biotheor. 2009, 57(3):321-330.
-
(2009)
Acta Biotheor.
, vol.57
, Issue.3
, pp. 321-330
-
-
Lin, H.1
-
29
-
-
84908072570
-
Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou' s general PseAAC
-
Dehzangi A., et al. Gram-positive and gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou' s general PseAAC. J. Theor. Biol. 2015, 364:284-294.
-
(2015)
J. Theor. Biol.
, vol.364
, pp. 284-294
-
-
Dehzangi, A.1
-
30
-
-
84908628104
-
Prediction of β-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine
-
Kumar R., et al. Prediction of β-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine. J. Theor. Biol. 2015, 365:96-103.
-
(2015)
J. Theor. Biol.
, vol.365
, pp. 96-103
-
-
Kumar, R.1
-
31
-
-
84899962803
-
Chou' s pseudo amino acid composition improves sequence-based antifreeze protein prediction
-
Mondal S., Pai P.P. Chou' s pseudo amino acid composition improves sequence-based antifreeze protein prediction. Journal of theoretical biology 2014, 356:30-35.
-
(2014)
Journal of theoretical biology
, vol.356
, pp. 30-35
-
-
Mondal, S.1
Pai, P.P.2
-
32
-
-
84939476364
-
MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier
-
btv212
-
Wang X., et al. MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier. Bioinformatics 2015, 31:2639-2645. btv212.
-
(2015)
Bioinformatics
, vol.31
, pp. 2639-2645
-
-
Wang, X.1
-
33
-
-
84900463301
-
PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition
-
Chen W., et al. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem. 2014, 456:53-60.
-
(2014)
Anal. Biochem.
, vol.456
, pp. 53-60
-
-
Chen, W.1
-
34
-
-
84922387565
-
PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions
-
btu602
-
Chen W., et al. PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics 2014, 31(1):119-120. btu602.
-
(2014)
Bioinformatics
, vol.31
, Issue.1
, pp. 119-120
-
-
Chen, W.1
-
35
-
-
84906975785
-
IDNA-Prot| dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
-
Liu B., et al. iDNA-Prot| dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014, 9(9):e106691.
-
(2014)
PLoS One
, vol.9
, Issue.9
, pp. e106691
-
-
Liu, B.1
-
36
-
-
84926631457
-
Identification of real microRNA precursors with a pseudo structure status composition approach
-
Liu B., et al. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One 2015, 10:e0121501.
-
(2015)
PLoS One
, vol.10
, pp. e0121501
-
-
Liu, B.1
-
37
-
-
84954388556
-
IMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach
-
ahead-of-print
-
Liu B., et al. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. J. Biomol. Struct. Dyn. 2015, 1-13. ahead-of-print.
-
(2015)
J. Biomol. Struct. Dyn.
, pp. 1-13
-
-
Liu, B.1
-
38
-
-
84927712367
-
RepDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
-
Liu B., et al. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 2015, 31(8):1307-1309.
-
(2015)
Bioinformatics
, vol.31
, Issue.8
, pp. 1307-1309
-
-
Liu, B.1
-
39
-
-
84979865452
-
Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
-
gkv458
-
Liu B., et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015, gkv458.
-
(2015)
Nucleic Acids Res.
-
-
Liu, B.1
-
40
-
-
84876053736
-
IRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
-
gks1450
-
Chen W., et al. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res. 2013, 41(6). gks1450.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.6
-
-
Chen, W.1
-
41
-
-
84902186435
-
ISS-PseDNC: identifying splicing sites using pseudo dinucleotide composition
-
Chen W., et al. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int. 2014, 2014:12.
-
(2014)
BioMed Res. Int.
, vol.2014
, pp. 12
-
-
Chen, W.1
-
42
-
-
84907236093
-
Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions
-
Feng P., Jiang N., Liu N. Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions. Sci. World J. 2014, 2014:4.
-
(2014)
Sci. World J.
, vol.2014
, pp. 4
-
-
Feng, P.1
Jiang, N.2
Liu, N.3
-
43
-
-
84896463976
-
INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
-
btu083
-
Guo S.H., et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 2014, 30(11):1522-1529. btu083.
-
(2014)
Bioinformatics
, vol.30
, Issue.11
, pp. 1522-1529
-
-
Guo, S.H.1
-
44
-
-
84920993500
-
IORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition
-
Li W.C., et al. iORI-PseKNC: a predictor for identifying origin of replication with pseudo k-tuple nucleotide composition. Chemom. Intell. Lab. Syst. 2015, 141:100-106.
-
(2015)
Chemom. Intell. Lab. Syst.
, vol.141
, pp. 100-106
-
-
Li, W.C.1
-
45
-
-
84941040066
-
IPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
-
Lin H., et al. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 2014, 42(21):12961-12972.
-
(2014)
Nucleic Acids Res.
, vol.42
, Issue.21
, pp. 12961-12972
-
-
Lin, H.1
-
46
-
-
84892958175
-
IRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components
-
Qiu W.R., Xiao X., Chou K.C. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci. 2014, 15(2):1746-1766.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, Issue.2
, pp. 1746-1766
-
-
Qiu, W.R.1
Xiao, X.2
Chou, K.C.3
-
47
-
-
78649756877
-
Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
-
Hayat M., Khan A. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol. 2011, 271(1):10-17.
-
(2011)
J. Theor. Biol.
, vol.271
, Issue.1
, pp. 10-17
-
-
Hayat, M.1
Khan, A.2
-
48
-
-
84876905280
-
ANN approach for weather prediction using back propagation
-
Devi C.J., et al. ANN approach for weather prediction using back propagation. Int. J. Eng. Trends Technol. 2012, 3(1):19-23.
-
(2012)
Int. J. Eng. Trends Technol.
, vol.3
, Issue.1
, pp. 19-23
-
-
Devi, C.J.1
-
49
-
-
0025206332
-
Probabilistic neural networks
-
Specht D.F. Probabilistic neural networks. Neural netw. 1990, 3(1):109-118.
-
(1990)
Neural netw.
, vol.3
, Issue.1
, pp. 109-118
-
-
Specht, D.F.1
-
50
-
-
33746261915
-
Optimizing the performance of probabilistic neural networks in a bioinformatics task
-
V. Georgiou, et al., Optimizing the performance of probabilistic neural networks in a bioinformatics task, in: Proceedings of the EUNITE 2004 Conference, 2004.
-
(2004)
Proceedings of the EUNITE 2004 Conference
-
-
Georgiou, V.1
-
51
-
-
84911416290
-
Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model
-
Khan Z.U., Hayat M., Khan M.A. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model. J. Theor. Biol. 2015, 365:197-203.
-
(2015)
J. Theor. Biol.
, vol.365
, pp. 197-203
-
-
Khan, Z.U.1
Hayat, M.2
Khan, M.A.3
-
52
-
-
84894414324
-
Neural network based ACC for optimized safety and comfort
-
Cherian M., Sathiyan S.P. Neural network based ACC for optimized safety and comfort. Int. J. Comput. Appl. 2012, 42(14):1-4.
-
(2012)
Int. J. Comput. Appl.
, vol.42
, Issue.14
, pp. 1-4
-
-
Cherian, M.1
Sathiyan, S.P.2
-
53
-
-
55949091513
-
Kernel regression networks with local structural information and covariance volume adaptation
-
Goulermas J.Y., Liatsis P., Zeng X.J. Kernel regression networks with local structural information and covariance volume adaptation. Neurocomputing 2008, 72(1):257-261.
-
(2008)
Neurocomputing
, vol.72
, Issue.1
, pp. 257-261
-
-
Goulermas, J.Y.1
Liatsis, P.2
Zeng, X.J.3
-
54
-
-
84943139615
-
-
http://www.mathworks.com/help/nnet/ug/generalized-regression-neural-networks.html.
-
-
-
-
55
-
-
84858833657
-
Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou's PseAAC
-
Hayat M., Khan A. Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou's PseAAC. Protein Pept. Lett. 2012, 19(4):411-421.
-
(2012)
Protein Pept. Lett.
, vol.19
, Issue.4
, pp. 411-421
-
-
Hayat, M.1
Khan, A.2
-
56
-
-
0030083476
-
Acidophilic bacteria-their potential mining and environmental applications
-
Jordan M., McGinness S., Phillips C. Acidophilic bacteria-their potential mining and environmental applications. Miner. Eng. 1996, 9(2):169-181.
-
(1996)
Miner. Eng.
, vol.9
, Issue.2
, pp. 169-181
-
-
Jordan, M.1
McGinness, S.2
Phillips, C.3
-
57
-
-
84940523358
-
PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine
-
Hayat M., Tahir M. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine. Mol. Biosyst. 2015, 11:2255-2262.
-
(2015)
Mol. Biosyst.
, vol.11
, pp. 2255-2262
-
-
Hayat, M.1
Tahir, M.2
-
59
-
-
84892457142
-
Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces
-
Hayat M., Tahir M., Khan S.A. Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces. J. Theor. Biol. 2014, 346:8-15.
-
(2014)
J. Theor. Biol.
, vol.346
, pp. 8-15
-
-
Hayat, M.1
Tahir, M.2
Khan, S.A.3
-
60
-
-
84904506417
-
Discriminating of protein structure classes by incorporating pseudo average chemical shift and support vector machine
-
Hayat M., Iqbal N. Discriminating of protein structure classes by incorporating pseudo average chemical shift and support vector machine. J. Comput. Methods Programs Biomed. 2014, 116(3):184-192.
-
(2014)
J. Comput. Methods Programs Biomed.
, vol.116
, Issue.3
, pp. 184-192
-
-
Hayat, M.1
Iqbal, N.2
-
61
-
-
84873575437
-
ISNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
-
Xu Y., et al. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013, 8(2):e55844.
-
(2013)
PLoS One
, vol.8
, Issue.2
, pp. e55844
-
-
Xu, Y.1
-
62
-
-
0035030201
-
Using subsite coupling to predict signal peptides
-
Chou K.C. Using subsite coupling to predict signal peptides. Protein Eng. 2001, 14(2):75-79.
-
(2001)
Protein Eng.
, vol.14
, Issue.2
, pp. 75-79
-
-
Chou, K.C.1
-
63
-
-
84930573120
-
IUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model
-
ahead-of-print
-
Qiu W.-R., et al. iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. J. Biomol. Struct. Dyn. 2014, 1-12. ahead-of-print.
-
(2014)
J. Biomol. Struct. Dyn.
, pp. 1-12
-
-
Qiu, W.-R.1
-
64
-
-
79953316878
-
ILoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
-
Chou K.-C., Wu Z.-C., Xiao X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One 2011, 6(3):e18258.
-
(2011)
PLoS One
, vol.6
, Issue.3
, pp. e18258
-
-
Chou, K.-C.1
Wu, Z.-C.2
Xiao, X.3
-
65
-
-
84855641685
-
ILoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
-
Chou K.-C., Wu Z.-C., Xiao X. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst. 2012, 8(2):629-641.
-
(2012)
Mol. Biosyst.
, vol.8
, Issue.2
, pp. 629-641
-
-
Chou, K.-C.1
Wu, Z.-C.2
Xiao, X.3
-
66
-
-
84875074764
-
IAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
-
Xiao X., et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 2013, 436(2):168-177.
-
(2013)
Anal. Biochem.
, vol.436
, Issue.2
, pp. 168-177
-
-
Xiao, X.1
-
67
-
-
84877758233
-
Some remarks on predicting multi-label attributes in molecular biosystems
-
Chou K.-C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst. 2013, 9(6):1092-1100.
-
(2013)
Mol. Biosyst.
, vol.9
, Issue.6
, pp. 1092-1100
-
-
Chou, K.-C.1
-
68
-
-
84876678050
-
WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids
-
Hayat M., Khan A. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids. J. Amino Acid 2013, 44(5):1317-1328.
-
(2013)
J. Amino Acid
, vol.44
, Issue.5
, pp. 1317-1328
-
-
Hayat, M.1
Khan, A.2
-
69
-
-
84944276251
-
Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou's general PseAAC
-
Ahmad S., Kabir M., Hayat M. Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou's general PseAAC. Comput. Methods Programs Biomed. 2015.
-
(2015)
Comput. Methods Programs Biomed.
-
-
Ahmad, S.1
Kabir, M.2
Hayat, M.3
-
70
-
-
84868128310
-
INuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties
-
Chen W., et al. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One 2012, 7(10):e47843.
-
(2012)
PLoS One
, vol.7
, Issue.10
, pp. e47843
-
-
Chen, W.1
-
71
-
-
84903592187
-
ICTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
-
Ding H., et al. iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int. 2014, 2014:1-10.
-
(2014)
BioMed Res. Int.
, vol.2014
, pp. 1-10
-
-
Ding, H.1
-
72
-
-
84905982402
-
INitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
-
Xu Y., et al. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014, 9(8):e105018.
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e105018
-
-
Xu, Y.1
|