메뉴 건너뛰기




Volumn 22, Issue 5, 2015, Pages 1193-1215

A rational model of function learning

Author keywords

Bayesian modeling; Function learning

Indexed keywords

BAYES THEOREM; CONCEPT FORMATION; HUMAN; LEARNING; MACHINE LEARNING; NORMAL DISTRIBUTION; PROBLEM SOLVING; PSYCHOLOGICAL MODEL; STATISTICAL MODEL;

EID: 84942371597     PISSN: 10699384     EISSN: 15315320     Source Type: Journal    
DOI: 10.3758/s13423-015-0808-5     Document Type: Review
Times cited : (94)

References (53)
  • 3
    • 0000705894 scopus 로고
    • The adaptive nature of human categorization
    • Anderson, J.R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409–429.
    • (1991) Psychological Review , vol.98 , Issue.3 , pp. 409-429
    • Anderson, J.R.1
  • 8
    • 34547518742 scopus 로고
    • Subjects’ ability to use functional rules
    • Brehmer, B. (1971). Subjects’ ability to use functional rules. Psychonomic Science, 24, 259–260.
    • (1971) Psychonomic Science , vol.24 , pp. 259-260
    • Brehmer, B.1
  • 9
    • 0002224661 scopus 로고
    • Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks
    • Brehmer, B. (1974). Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. Organizational Behavior and Human Decision Processes, 11, 1– 27.
    • (1974) Organizational Behavior and Human Decision Processes , vol.11 , pp. 1-27
    • Brehmer, B.1
  • 10
    • 0011455335 scopus 로고
    • Subjects’ ability to find the parameters of functional rules in probabilistic inference tasks
    • Brehmer, B. (1976). Subjects’ ability to find the parameters of functional rules in probabilistic inference tasks. Organizational Behavior and Human Performance, 17(2), 388–397.
    • (1976) Organizational Behavior and Human Performance , vol.17 , Issue.2 , pp. 388-397
    • Brehmer, B.1
  • 11
    • 84984005706 scopus 로고
    • Learning and hypothesis testing in probabilistic inference tasks
    • Brehmer, B., Alm, H., Warg, L. (1985). Learning and hypothesis testing in probabilistic inference tasks. Scandinavian Journal of Psychology, 26(1), 305–313.
    • (1985) Scandinavian Journal of Psychology , vol.26 , Issue.1 , pp. 305-313
    • Brehmer, B.1    Alm, H.2    Warg, L.3
  • 12
    • 0041150761 scopus 로고    scopus 로고
    • Learning functional relations based on experience with input-output pairs by humans and artificial neural networks
    • Lamberts K, Shanks D, (eds), MIT Press, Cambridge
    • Busemeyer, J.R., Byun, E., DeLosh, E.L., McDaniel, M.A. (1997). Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. In Lamberts, K., & Shanks, D. (Eds.), Concepts and Categories. (pp. 405–437). Cambridge: MIT Press.
    • (1997) Concepts and Categories , pp. 405-437
    • Busemeyer, J.R.1    Byun, E.2    DeLosh, E.L.3    McDaniel, M.A.4
  • 15
    • 0037219380 scopus 로고    scopus 로고
    • Simplicity: a unifying principle in cognitive science
    • Chater, N., & Vitanyi, P. (2003). Simplicity: a unifying principle in cognitive science. Trends in Cognitive Science, 7, 19–22.
    • (2003) Trends in Cognitive Science , vol.7 , pp. 19-22
    • Chater, N.1    Vitanyi, P.2
  • 23
    • 85018131186 scopus 로고    scopus 로고
    • Moving beyond qualitative evaluations of Bayesian models of cognition
    • Hemmer, P., Tauber, S., Steyvers, M. (2014). Moving beyond qualitative evaluations of Bayesian models of cognition. Psychonomic Bulletin & Review, 1–15.
    • (2014) Psychonomic Bulletin & Review , pp. 1-15
    • Hemmer, P.1    Tauber, S.2    Steyvers, M.3
  • 26
    • 84880714978 scopus 로고    scopus 로고
    • Learning and extrapolating a periodic function
    • Kalish, M.L. (2013). Learning and extrapolating a periodic function. Memory & Cognition, 41(6), 886–896.
    • (2013) Memory & Cognition , vol.41 , Issue.6 , pp. 886-896
    • Kalish, M.L.1
  • 27
    • 34547533419 scopus 로고    scopus 로고
    • Lewandowsky, S: Iterated learning intergenerational knowledge transmission reveals inductive biases Psychonomic Bulletin and Review
    • Kalish, M.L., Griffiths, T.L., Lewandowsky, S. (2007). Iterated learning intergenerational knowledge transmission reveals inductive biases Psychonomic Bulletin and Review.
    • (2007) Griffiths, T.L.
    • Kalish, M.L.1
  • 28
    • 5644280288 scopus 로고    scopus 로고
    • Population of linear experts: Knowledge partitioning and function learning
    • PID: 15482074
    • Kalish, M.L., Lewandowsky, S., Kruschke, J. (2004). Population of linear experts: Knowledge partitioning and function learning. Psychological Review, 111, 1072–1099.
    • (2004) Psychological Review , vol.111 , pp. 1072-1099
    • Kalish, M.L.1    Lewandowsky, S.2    Kruschke, J.3
  • 29
    • 0035304656 scopus 로고    scopus 로고
    • Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity
    • Kirby, S. (2001). Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity. IEEE Journal of Evolutionary Computation, 5, 102–110.
    • (2001) IEEE Journal of Evolutionary Computation , vol.5 , pp. 102-110
    • Kirby, S.1
  • 35
    • 85018120147 scopus 로고    scopus 로고
    • Superspace extrapolation reveals inductive biases in function learning, In: Miyake, N., Peebles, D., and Cooper, R. P., editors, Proceedings of the 34th Annual Conference of the Cognitive Science Society
    • Lucas, C.G., Sterling, D.J., Kemp, C. (2012). Superspace extrapolation reveals inductive biases in function learning, In: Miyake, N., Peebles, D., and Cooper, R. P., editors, Proceedings of the 34th Annual Conference of the Cognitive Science Society. Cognitive Science Society.
    • (2012) Cognitive Science Society
    • Lucas, C.G.1    Sterling, D.J.2    Kemp, C.3
  • 36
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks
    • MacKay, D. (1995). Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469–505.
    • (1995) Network: Computation in Neural Systems , vol.6 , pp. 469-505
    • MacKay, D.1
  • 38
    • 21244483173 scopus 로고    scopus 로고
    • The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models
    • McDaniel, M., & Busemeyer, J. (2005). The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models. Psychonomic Bulletin & Review, 12(1), 24.
    • (2005) Psychonomic Bulletin & Review , vol.12 , Issue.1 , pp. 24
    • McDaniel, M.1    Busemeyer, J.2
  • 40
    • 84858766481 scopus 로고    scopus 로고
    • In Weiss, Y., Schölkopf, B., Platt, J. (Eds.) pp Cambridge, MA: MIT Press 18883–890
    • Meeds, E., & Osindero, S. (2006). Advances in Neural Information Processing Systems 18. In Weiss, Y., Schölkopf, B., Platt, J. (Eds.) (pp. 883–890). Cambridge, MA: MIT Press.
    • (2006) Advances in Neural Information Processing Systems
    • Meeds, E.1    Osindero, S.2
  • 46
    • 84896062664 scopus 로고    scopus 로고
    • Infinite mixtures of Gaussian process experts In: Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, pages 881–888
    • Rasmussen, C.E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts In: Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, pages 881–888. MIT Press.
    • (2002) MIT Press
    • Rasmussen, C.E.1    Ghahramani, Z.2
  • 48
    • 78249247078 scopus 로고    scopus 로고
    • Rational approximations to rational models: alternative algorithms for category learning
    • PID: 21038975
    • Sanborn, A.N., Griffiths, T.L., Navarro, D.J. (2010). Rational approximations to rational models: alternative algorithms for category learning. Psychological Review, 117(4), 1144.
    • (2010) Psychological Review , vol.117 , Issue.4 , pp. 1144
    • Sanborn, A.N.1    Griffiths, T.L.2    Navarro, D.J.3
  • 49
    • 0023223978 scopus 로고
    • Towards a universal law of generalization for psychological science
    • PID: 3629243
    • Shepard, R.N. (1987). Towards a universal law of generalization for psychological science. Science, 237, 1317–1323.
    • (1987) Science , vol.237 , pp. 1317-1323
    • Shepard, R.N.1
  • 51
    • 33746260413 scopus 로고    scopus 로고
    • Theory-based Bayesian models of inductive learning and reasoning
    • Tenenbaum, J.B., Griffiths, T.L., Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10, 309–318.
    • (2006) Trends in Cognitive Science , vol.10 , pp. 309-318
    • Tenenbaum, J.B.1    Griffiths, T.L.2    Kemp, C.3
  • 52
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • Jordan M I, (ed), MIT Press, Cambridge MA
    • Williams, C.K.I. (1998). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Jordan, M. I. (Ed.), Learning in Graphical Models. (pp. 599–621). Cambridge MA.: MIT Press.
    • (1998) Learning in Graphical Models , pp. 599-621
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.