-
3
-
-
0000705894
-
The adaptive nature of human categorization
-
Anderson, J.R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409–429.
-
(1991)
Psychological Review
, vol.98
, Issue.3
, pp. 409-429
-
-
Anderson, J.R.1
-
6
-
-
84898960235
-
Bayesian optimization explains human active search
-
Curran Associates, Inc
-
Borji, A., & Itti, L. (2013). Bayesian optimization explains human active search. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 26. (pp. 55–63): Curran Associates, Inc.
-
(2013)
Advances in Neural Information Processing Systems 26
, pp. 55-63
-
-
Borji, A.1
Itti, L.2
Burges, C.3
Bottou, L.4
Welling, M.5
Ghahramani, Z.6
Weinberger, K.7
-
7
-
-
0942278859
-
Nonmonotonic extrapolation in function learning
-
Bott, L., & Heit, E. (2004). Nonmonotonic extrapolation in function learning. Journal of Experimental Psychology: Learning Memory, and Cognition, 30(1).
-
(2004)
Journal of Experimental Psychology: Learning Memory, and Cognition
, vol.30
, Issue.1
-
-
Bott, L.1
Heit, E.2
-
8
-
-
34547518742
-
Subjects’ ability to use functional rules
-
Brehmer, B. (1971). Subjects’ ability to use functional rules. Psychonomic Science, 24, 259–260.
-
(1971)
Psychonomic Science
, vol.24
, pp. 259-260
-
-
Brehmer, B.1
-
9
-
-
0002224661
-
Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks
-
Brehmer, B. (1974). Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. Organizational Behavior and Human Decision Processes, 11, 1– 27.
-
(1974)
Organizational Behavior and Human Decision Processes
, vol.11
, pp. 1-27
-
-
Brehmer, B.1
-
10
-
-
0011455335
-
Subjects’ ability to find the parameters of functional rules in probabilistic inference tasks
-
Brehmer, B. (1976). Subjects’ ability to find the parameters of functional rules in probabilistic inference tasks. Organizational Behavior and Human Performance, 17(2), 388–397.
-
(1976)
Organizational Behavior and Human Performance
, vol.17
, Issue.2
, pp. 388-397
-
-
Brehmer, B.1
-
11
-
-
84984005706
-
Learning and hypothesis testing in probabilistic inference tasks
-
Brehmer, B., Alm, H., Warg, L. (1985). Learning and hypothesis testing in probabilistic inference tasks. Scandinavian Journal of Psychology, 26(1), 305–313.
-
(1985)
Scandinavian Journal of Psychology
, vol.26
, Issue.1
, pp. 305-313
-
-
Brehmer, B.1
Alm, H.2
Warg, L.3
-
12
-
-
0041150761
-
Learning functional relations based on experience with input-output pairs by humans and artificial neural networks
-
Lamberts K, Shanks D, (eds), MIT Press, Cambridge
-
Busemeyer, J.R., Byun, E., DeLosh, E.L., McDaniel, M.A. (1997). Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. In Lamberts, K., & Shanks, D. (Eds.), Concepts and Categories. (pp. 405–437). Cambridge: MIT Press.
-
(1997)
Concepts and Categories
, pp. 405-437
-
-
Busemeyer, J.R.1
Byun, E.2
DeLosh, E.L.3
McDaniel, M.A.4
-
15
-
-
0037219380
-
Simplicity: a unifying principle in cognitive science
-
Chater, N., & Vitanyi, P. (2003). Simplicity: a unifying principle in cognitive science. Trends in Cognitive Science, 7, 19–22.
-
(2003)
Trends in Cognitive Science
, vol.7
, pp. 19-22
-
-
Chater, N.1
Vitanyi, P.2
-
16
-
-
0031180970
-
Extrapolation: The sine qua non of abstraction in function learning
-
DeLosh, E.L., Busemeyer, J.R., McDaniel, M.A. (1997). Extrapolation: The sine qua non of abstraction in function learning. Journal of Experimental Psychology: Learning Memory, and Cognition, 23, 968–986.
-
(1997)
Journal of Experimental Psychology: Learning Memory, and Cognition
, vol.23
, pp. 968-986
-
-
DeLosh, E.L.1
Busemeyer, J.R.2
McDaniel, M.A.3
-
17
-
-
85018124600
-
Ghahramani, Z. (2013)
-
Duvenaud, D., Lloyd, J.R., Grosse, R., Tenenbaum, J.B., Ghahramani, Z. (2013). Structure discovery in nonparametric regression through compositional kernel search. arXiv preprint. arXiv:1302.4922.
-
Structure discovery in nonparametric regression through compositional kernel search. arXiv preprint. arXiv
, pp. 4922
-
-
Duvenaud, D.1
Lloyd, J.R.2
Grosse, R.3
Tenenbaum, J.B.4
-
18
-
-
0032087040
-
Rules and exemplars in category learning
-
Erickson, M., & Kruschke, J. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127(2), 107.
-
(1998)
Journal of Experimental Psychology: General
, vol.127
, Issue.2
, pp. 107
-
-
Erickson, M.1
Kruschke, J.2
-
19
-
-
33645223642
-
Bayesian data analysis
-
Gelman, A., Carlin, J., Stern, H., Rubin, D (2004). Bayesian data analysis. CRC Press.
-
(2004)
CRC Press
-
-
Gelman, A.1
Carlin, J.2
Stern, H.3
Rubin, D.4
-
21
-
-
84863342363
-
Modeling human function learning with Gaussian processes
-
Griffiths, T.L., Lucas, C.G., Williams, J.J., Kalish, M.L. (2009). Modeling human function learning with Gaussian processes. Advances in Neural Information Processing Systems, 21.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 21
-
-
Griffiths, T.L.1
Lucas, C.G.2
Williams, J.J.3
Kalish, M.L.4
-
22
-
-
84864381195
-
Bridging levels of analysis for probabilistic models of cognition
-
Griffiths, T.L., Vul, E., Sanborn, A. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263–268.
-
(2012)
Current Directions in Psychological Science
, vol.21
, Issue.4
, pp. 263-268
-
-
Griffiths, T.L.1
Vul, E.2
Sanborn, A.3
-
23
-
-
85018131186
-
Moving beyond qualitative evaluations of Bayesian models of cognition
-
Hemmer, P., Tauber, S., Steyvers, M. (2014). Moving beyond qualitative evaluations of Bayesian models of cognition. Psychonomic Bulletin & Review, 1–15.
-
(2014)
Psychonomic Bulletin & Review
, pp. 1-15
-
-
Hemmer, P.1
Tauber, S.2
Steyvers, M.3
-
25
-
-
0001940458
-
Adaptive mixtures of local experts
-
Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. (1991). Adaptive mixtures of local experts. Neural Computation, 3(1), 79–87.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.1
Jordan, M.2
Nowlan, S.3
Hinton, G.4
-
26
-
-
84880714978
-
Learning and extrapolating a periodic function
-
Kalish, M.L. (2013). Learning and extrapolating a periodic function. Memory & Cognition, 41(6), 886–896.
-
(2013)
Memory & Cognition
, vol.41
, Issue.6
, pp. 886-896
-
-
Kalish, M.L.1
-
27
-
-
34547533419
-
-
Lewandowsky, S: Iterated learning intergenerational knowledge transmission reveals inductive biases Psychonomic Bulletin and Review
-
Kalish, M.L., Griffiths, T.L., Lewandowsky, S. (2007). Iterated learning intergenerational knowledge transmission reveals inductive biases Psychonomic Bulletin and Review.
-
(2007)
Griffiths, T.L.
-
-
Kalish, M.L.1
-
28
-
-
5644280288
-
Population of linear experts: Knowledge partitioning and function learning
-
PID: 15482074
-
Kalish, M.L., Lewandowsky, S., Kruschke, J. (2004). Population of linear experts: Knowledge partitioning and function learning. Psychological Review, 111, 1072–1099.
-
(2004)
Psychological Review
, vol.111
, pp. 1072-1099
-
-
Kalish, M.L.1
Lewandowsky, S.2
Kruschke, J.3
-
29
-
-
0035304656
-
Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity
-
Kirby, S. (2001). Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity. IEEE Journal of Evolutionary Computation, 5, 102–110.
-
(2001)
IEEE Journal of Evolutionary Computation
, vol.5
, pp. 102-110
-
-
Kirby, S.1
-
30
-
-
0026229883
-
Function learning: Induction of continuous stimulus-response relations
-
Koh, K., & Meyer, D. (1991). Function learning: Induction of continuous stimulus-response relations. Journal of Experimental Psychology: Learning Memory, and Cognition, 17(5), 811–836.
-
(1991)
Journal of Experimental Psychology: Learning Memory, and Cognition
, vol.17
, Issue.5
, pp. 811-836
-
-
Koh, K.1
Meyer, D.2
-
31
-
-
33748435778
-
Why people underestimate y when extrapolating in linear functions
-
Kwantes, P., & Neal, A. (2006). Why people underestimate y when extrapolating in linear functions. Journal of Experimental Psychology: Learning Memory, and Cognition, 32(5), 1019.
-
(2006)
Journal of Experimental Psychology: Learning Memory, and Cognition
, vol.32
, Issue.5
, pp. 1019
-
-
Kwantes, P.1
Neal, A.2
-
32
-
-
85047673631
-
Simplified learning in complex situations: Knowledge partitioning in human learning
-
Lewandowsky, S.L., Kalish, M.L., Ngang, S.K. (2002). Simplified learning in complex situations: Knowledge partitioning in human learning. Journal of Experimental Psychology: General, 131, 163–193.
-
(2002)
Journal of Experimental Psychology: General
, vol.131
, pp. 163-193
-
-
Lewandowsky, S.L.1
Kalish, M.L.2
Ngang, S.K.3
-
33
-
-
84899029927
-
Optimizing instructional policies
-
Curran Associates, Inc
-
Lindsey, R.V., Mozer, M.C., Huggins, W.J., Pashler, H. (2013). Optimizing instructional policies. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 26. (pp. 2778–2786): Curran Associates, Inc.
-
(2013)
Advances in Neural Information Processing Systems 26
, pp. 2778-2786
-
-
Lindsey, R.V.1
Mozer, M.C.2
Huggins, W.J.3
Pashler, H.4
Burges, C.5
Bottou, L.6
Welling, M.7
Ghahramani, Z.8
Weinberger, K.9
-
35
-
-
85018120147
-
Superspace extrapolation reveals inductive biases in function learning, In: Miyake, N., Peebles, D., and Cooper, R. P., editors, Proceedings of the 34th Annual Conference of the Cognitive Science Society
-
Lucas, C.G., Sterling, D.J., Kemp, C. (2012). Superspace extrapolation reveals inductive biases in function learning, In: Miyake, N., Peebles, D., and Cooper, R. P., editors, Proceedings of the 34th Annual Conference of the Cognitive Science Society. Cognitive Science Society.
-
(2012)
Cognitive Science Society
-
-
Lucas, C.G.1
Sterling, D.J.2
Kemp, C.3
-
36
-
-
0001441372
-
Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks
-
MacKay, D. (1995). Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6, 469–505.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, pp. 469-505
-
-
MacKay, D.1
-
38
-
-
21244483173
-
The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models
-
McDaniel, M., & Busemeyer, J. (2005). The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models. Psychonomic Bulletin & Review, 12(1), 24.
-
(2005)
Psychonomic Bulletin & Review
, vol.12
, Issue.1
, pp. 24
-
-
McDaniel, M.1
Busemeyer, J.2
-
39
-
-
58449113304
-
Predicting transfer performance: A comparison of competing function learning models
-
McDaniel, M., Dimperio, E., Griego, J., Busemeyer, J. (2009). Predicting transfer performance: A comparison of competing function learning models. Journal of Experimental Psychology: Learning Memory, and Cognition, 35(1), 173.
-
(2009)
Journal of Experimental Psychology: Learning Memory, and Cognition
, vol.35
, Issue.1
, pp. 173
-
-
McDaniel, M.1
Dimperio, E.2
Griego, J.3
Busemeyer, J.4
-
40
-
-
84858766481
-
-
In Weiss, Y., Schölkopf, B., Platt, J. (Eds.) pp Cambridge, MA: MIT Press 18883–890
-
Meeds, E., & Osindero, S. (2006). Advances in Neural Information Processing Systems 18. In Weiss, Y., Schölkopf, B., Platt, J. (Eds.) (pp. 883–890). Cambridge, MA: MIT Press.
-
(2006)
Advances in Neural Information Processing Systems
-
-
Meeds, E.1
Osindero, S.2
-
41
-
-
33746047655
-
Mercer?s theorem, feature maps
-
Minh, H., Niyogi, P., Yao, Y. (2006). Mercer?s theorem, feature maps, and smoothing Learning theory.
-
(2006)
Smoothing Learning theory
-
-
Minh, H.1
Niyogi, P.2
Yao, Y.3
-
43
-
-
33645029342
-
Modeling individual differences using Dirichlet processes
-
Navarro, D.J., Griffiths, T.L., Steyvers, M., Lee, M.D. (2006). Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology, 50, 101–122.
-
(2006)
Journal of Mathematical Psychology
, vol.50
, pp. 101-122
-
-
Navarro, D.J.1
Griffiths, T.L.2
Steyvers, M.3
Lee, M.D.4
-
46
-
-
84896062664
-
Infinite mixtures of Gaussian process experts In: Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, pages 881–888
-
Rasmussen, C.E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts In: Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, pages 881–888. MIT Press.
-
(2002)
MIT Press
-
-
Rasmussen, C.E.1
Ghahramani, Z.2
-
48
-
-
78249247078
-
Rational approximations to rational models: alternative algorithms for category learning
-
PID: 21038975
-
Sanborn, A.N., Griffiths, T.L., Navarro, D.J. (2010). Rational approximations to rational models: alternative algorithms for category learning. Psychological Review, 117(4), 1144.
-
(2010)
Psychological Review
, vol.117
, Issue.4
, pp. 1144
-
-
Sanborn, A.N.1
Griffiths, T.L.2
Navarro, D.J.3
-
49
-
-
0023223978
-
Towards a universal law of generalization for psychological science
-
PID: 3629243
-
Shepard, R.N. (1987). Towards a universal law of generalization for psychological science. Science, 237, 1317–1323.
-
(1987)
Science
, vol.237
, pp. 1317-1323
-
-
Shepard, R.N.1
-
50
-
-
77954791770
-
Learning in a changing environment
-
Speekenbrink, M., & Shanks, D.R. (2010). Learning in a changing environment. Journal of Experimental Psychology: General, 139(2), 266.
-
(2010)
Journal of Experimental Psychology: General
, vol.139
, Issue.2
, pp. 266
-
-
Speekenbrink, M.1
Shanks, D.R.2
-
51
-
-
33746260413
-
Theory-based Bayesian models of inductive learning and reasoning
-
Tenenbaum, J.B., Griffiths, T.L., Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10, 309–318.
-
(2006)
Trends in Cognitive Science
, vol.10
, pp. 309-318
-
-
Tenenbaum, J.B.1
Griffiths, T.L.2
Kemp, C.3
-
52
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
Jordan M I, (ed), MIT Press, Cambridge MA
-
Williams, C.K.I. (1998). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Jordan, M. I. (Ed.), Learning in Graphical Models. (pp. 599–621). Cambridge MA.: MIT Press.
-
(1998)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
|