-
1
-
-
0003660578
-
Functional learning: The learning of continuous functional mappings relating stimulus and response continua
-
Princeton, NJ
-
J. D. Carroll. Functional learning: The learning of continuous functional mappings relating stimulus and response continua. Education Testing Service, Princeton, NJ, 1963.
-
(1963)
Education Testing Service
-
-
Carroll, J.D.1
-
2
-
-
0002224661
-
Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks
-
B. Brehmer. Hypotheses about relations between scaled variables in the learning of probabilistic inference tasks. Organizational Behavior and Human Decision Processes, 11:1-27, 1974.
-
(1974)
Organizational Behavior and Human Decision Processes
, vol.11
, pp. 1-27
-
-
Brehmer, B.1
-
3
-
-
0026229883
-
Function learning: Induction of continuous stimulus-response relations
-
K. Koh and D. E. Meyer. Function learning: Induction of continuous stimulus-response relations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17:811-836, 1991.
-
(1991)
Journal of Experimental Psychology: Learning, Memory, and Cognition
, vol.17
, pp. 811-836
-
-
Koh, K.1
Meyer, D.E.2
-
4
-
-
0031180970
-
Extrapolation: The sine qua non for abstraction in function learning
-
E. L. DeLosh, J. R. Busemeyer, and M. A. McDaniel. Extrapolation: The sine qua non of abstraction in function learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23:968-986, 1997. (Pubitemid 127543625)
-
(1997)
Journal of Experimental Psychology: Learning Memory and Cognition
, vol.23
, Issue.4
, pp. 968-986
-
-
DeLosh, E.L.1
Busemeyer, J.R.2
McDaniel, M.A.3
-
5
-
-
0041150761
-
Learning functional relations based on experience with input-output pairs by humans and artificial neural networks
-
K. Lamberts and D. Shanks, editors. MIT Press, Cambridge
-
J. R. Busemeyer, E. Byun, E. L. DeLosh, and M. A. McDaniel. Learning functional relations based on experience with input-output pairs by humans and artificial neural networks. In K. Lamberts and D. Shanks, editors, Concepts and Categories, pages 405-437. MIT Press, Cambridge, 1997.
-
(1997)
Concepts and Categories
, pp. 405-437
-
-
Busemeyer, J.R.1
Byun, E.2
Delosh, E.L.3
McDaniel, M.A.4
-
6
-
-
21244483173
-
The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models
-
M. A. McDaniel and J. R. Busemeyer. The conceptual basis of function learning and extrapolation: Comparison of rule-based and associative-based models. Psychonomic Bulletin and Review, 12:24-42, 2005. (Pubitemid 40900492)
-
(2005)
Psychonomic Bulletin and Review
, vol.12
, Issue.1
, pp. 24-42
-
-
Mcdaniel, M.A.1
Busemeyer, J.R.2
-
7
-
-
5644280288
-
Population of linear experts: Knowledge partitioning and function learning
-
DOI 10.1037/0033-295X.111.4.1072
-
M. Kalish, S. Lewandowsky, and J. Kruschke. Population of linear experts: Knowledge partitioning and function learning. Psychological Review, 111:1072-1099, 2004. (Pubitemid 39375088)
-
(2004)
Psychological Review
, vol.111
, Issue.4
, pp. 1072-1099
-
-
Kalish, M.L.1
Lewandowsky, S.2
Kruschke, J.K.3
-
10
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan, editor. MIT Press, Cambridge, MA
-
C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning in Graphical Models, pages 599-621. MIT Press, Cambridge, MA, 1998.
-
(1998)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
11
-
-
85027858154
-
Priors for infinite networks
-
Department of Computer Science, University of Toronto
-
R. M. Neal. Priors for infinite networks. Technical Report CRG-TR-94-1, Department of Computer Science, University of Toronto, 1994.
-
(1994)
Technical Report CRG-TR-94-1
-
-
Neal, R.M.1
-
12
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical bayesian methods for supervised neural networks
-
D.J.C. MacKay. Probable networks and plausible predictions - a review of practical bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6:469-505, 1995.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, pp. 469-505
-
-
MacKay, D.J.C.1
-
13
-
-
0003860037
-
-
Chapman and Hall, Suffolk, UK
-
W.R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman and Hall, Suffolk, UK, 1996.
-
(1996)
Markov Chain Monte Carlo in Practice
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
|