메뉴 건너뛰기




Volumn 42, Issue 24, 2015, Pages 9489-9498

A parameter-free similarity graph for spectral clustering

Author keywords

Fully connected graph; k nearest neighbor; Similarity graph; Spectral clustering; neighborhood

Indexed keywords

CLUSTERING ALGORITHMS; GRAPH THEORY; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; SPECTRUM ANALYSIS;

EID: 84942333236     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.07.074     Document Type: Article
Times cited : (27)

References (40)
  • 1
    • 84886567160 scopus 로고    scopus 로고
    • UCI machine learning repository [ ] Irvine
    • School of Information and Computer Science
    • Bache, K. & Lichman, M. (2013). UCI machine learning repository [ http://archive.ics.uci.edu/ml ] Irvine, CA: University of California, School of Information and Computer Science
    • (2013) CA: University of California
    • Bache, K.1    Lichman, M.2
  • 2
    • 84919478149 scopus 로고    scopus 로고
    • A density-based similarity matrix construction for spectral clustering
    • Beauchemin M. A density-based similarity matrix construction for spectral clustering Neurocomputing 151 2015 835 844
    • (2015) Neurocomputing , vol.151 , pp. 835-844
    • Beauchemin, M.1
  • 3
    • 0031571391 scopus 로고    scopus 로고
    • Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection
    • Brito M., Chavez E., Quiroz A., Yukich J. Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection Statistics & Probability Letters 35 1997 33 42
    • (1997) Statistics & Probability Letters , vol.35 , pp. 33-42
    • Brito, M.1    Chavez, E.2    Quiroz, A.3    Yukich, J.4
  • 4
    • 84908403940 scopus 로고    scopus 로고
    • Retrieved from Last accessed: July 10
    • Buerk, I. (2015). Fast and efficient spectral clustering. Retrieved from http://www.mathworks.com/matlabcentral/fileexchange/34412 Last accessed: July 10, 2015.
    • (2015) Fast and Efficient Spectral Clustering
    • Buerk, I.1
  • 5
    • 84898939894 scopus 로고    scopus 로고
    • Proximity graphs for clustering and manifold learning
    • L.K. Saul Y. Weiss L. Bottou MIT Press Cambridge
    • Carreira-Perpinan M.A., Zemel R.S. Proximity graphs for clustering and manifold learning L.K. Saul Y. Weiss L. Bottou Advances in neural information processing systems 2005 MIT Press Cambridge 225 232
    • (2005) Advances in Neural Information Processing Systems , pp. 225-232
    • Carreira-Perpinan, M.A.1    Zemel, R.S.2
  • 6
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • Chang H., Yeung D.Y. Robust path-based spectral clustering Pattern Recognition 41 1 2008 191 203
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 191-203
    • Chang, H.1    Yeung, D.Y.2
  • 7
  • 8
    • 84935027593 scopus 로고    scopus 로고
    • Spectral clustering and semi-supervised learning using evolving similarity graphs
    • Chrysouli C., Tefas A. Spectral clustering and semi-supervised learning using evolving similarity graphs Applied Soft Computing 2015 10.1016/j.asoc.2015.05.026
    • (2015) Applied Soft Computing
    • Chrysouli, C.1    Tefas, A.2
  • 13
    • 84963085136 scopus 로고
    • New statistical approach to geographic variation analysis
    • Gabriel K.R., Sokal R.R. New statistical approach to geographic variation analysis Systematic Zoology 18 3 1969 259 278
    • (1969) Systematic Zoology , vol.18 , Issue.3 , pp. 259-278
    • Gabriel, K.R.1    Sokal, R.R.2
  • 14
    • 80255131262 scopus 로고    scopus 로고
    • A novel approach to update summarization using evolutionary manifold-ranking and spectral clustering
    • He R., Qin B., Liu T. A novel approach to update summarization using evolutionary manifold-ranking and spectral clustering Expert Systems with Applications 39 3 2012 2375 2384
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 2375-2384
    • He, R.1    Qin, B.2    Liu, T.3
  • 16
    • 84908425773 scopus 로고    scopus 로고
    • An adaptive neighbourhood construction algorithm based on density and connectivity
    • ̄nkaya T., KayalIgil S., Özdemirel N.E. An adaptive neighbourhood construction algorithm based on density and connectivity Pattern Recognition Letters 52 2015 17 24
    • (2015) Pattern Recognition Letters , vol.52 , pp. 17-24
    • Inkaya, T.1    KayalIgil, S.2    Özdemirel, N.E.3
  • 17
    • 84872271533 scopus 로고    scopus 로고
    • Ph.D. Dissertation. Rutgers University New Brunswick, New Jersey
    • ̄yigün C. Probabilistic distance clustering 2008 Ph.D. Dissertation. Rutgers University New Brunswick, New Jersey
    • (2008) Probabilistic Distance Clustering
    • Iyigün, C.1
  • 18
    • 0026924875 scopus 로고
    • Relative neighborhood graphs and their relatives
    • Jaromczyk J.W., Toussaint G.T. Relative neighborhood graphs and their relatives Proceedings of the IEEE 80 9 1992 1502 1517
    • (1992) Proceedings of the IEEE , vol.80 , Issue.9 , pp. 1502-1517
    • Jaromczyk, J.W.1    Toussaint, G.T.2
  • 20
    • 84906056065 scopus 로고    scopus 로고
    • Latent tree models for rounding in spectral clustering
    • Liu A.H., Poon L.K.M., Liu T.-F., Zhang N.L. Latent tree models for rounding in spectral clustering Neurocomputing 144 2014 448 462
    • (2014) Neurocomputing , vol.144 , pp. 448-462
    • Liu, A.H.1    Poon, L.K.M.2    Liu, T.-F.3    Zhang, N.L.4
  • 21
    • 84885022443 scopus 로고    scopus 로고
    • Non-negative and sparse spectral clustering
    • Lu H., Fu Z., Shu X. Non-negative and sparse spectral clustering Pattern Recognition 47 2014 418 426
    • (2014) Pattern Recognition , vol.47 , pp. 418-426
    • Lu, H.1    Fu, Z.2    Shu, X.3
  • 22
    • 84996143328 scopus 로고    scopus 로고
    • How the result of graph clustering methods depends on the construction of the graph
    • Maier M., von Luxburg U., Hein M. How the result of graph clustering methods depends on the construction of the graph ESAIM: Probability and Statistics 17 2013 370 418
    • (2013) ESAIM: Probability and Statistics , vol.17 , pp. 370-418
    • Maier, M.1    Von Luxburg, U.2    Hein, M.3
  • 25
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. Dietterich S. Becker Z. Ghahramani MIT Press Cambridge
    • Ng A., Jordan M., Weiss Y. On spectral clustering: Analysis and an algorithm T. Dietterich S. Becker Z. Ghahramani Advances in neural information processing systems 2002 MIT Press Cambridge 849 856
    • (2002) Advances in Neural Information Processing Systems , pp. 849-856
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 26
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of the clustering methods
    • Rand W.M. Objective criteria for the evaluation of the clustering methods Journal of the American Statistical Association 66 336 1971 846 850
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 29
    • 84859421733 scopus 로고    scopus 로고
    • Vector quantization based approximate spectral clustering of large datasets
    • Taşdemir K. Vector quantization based approximate spectral clustering of large datasets Pattern Recognition 45 2012 3034 3044
    • (2012) Pattern Recognition , vol.45 , pp. 3034-3044
    • Taşdemir, K.1
  • 30
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of self-organizing maps
    • Taşdemir K., Merényi E. Exploiting data topology in visualization and clustering of self-organizing maps IEEE Transactions on Neural Networks 20 4 2009 549 562
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.4 , pp. 549-562
    • Taşdemir, K.1    Merényi, E.2
  • 31
    • 84920663980 scopus 로고    scopus 로고
    • Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures
    • Taşdemir K., Yalçin B., Yildirim I. Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures Pattern Recognition 48 2015 1465 1477
    • (2015) Pattern Recognition , vol.48 , pp. 1465-1477
    • Taşdemir, K.1    Yalçin, B.2    Yildirim, I.3
  • 32
    • 0019226255 scopus 로고
    • On the dominance of nonparametric Bayes rule discriminant algorithms in high dimensions
    • Van Ness J. On the dominance of nonparametric Bayes rule discriminant algorithms in high dimensions Pattern Recognition 12 6 1980 355 368
    • (1980) Pattern Recognition , vol.12 , Issue.6 , pp. 355-368
    • Van Ness, J.1
  • 33
    • 84875938063 scopus 로고    scopus 로고
    • Spatiooral feature-based keyframe detection from video shots using spectral clustering
    • Vázquez-Martín R., Bandera A. Spatiooral feature-based keyframe detection from video shots using spectral clustering Pattern Recognition Letters 34 7 2013 770 779
    • (2013) Pattern Recognition Letters , vol.34 , Issue.7 , pp. 770-779
    • Vázquez-Martín, R.1    Bandera, A.2
  • 34
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Von Luxburg U. A tutorial on spectral clustering Statistics and Computing 17 2007 395 416
    • (2007) Statistics and Computing , vol.17 , pp. 395-416
    • Von Luxburg, U.1
  • 35
    • 37449022393 scopus 로고    scopus 로고
    • Recognition of semiconductor defect patterns using spatial filtering and spectral clustering
    • Wang C.-H. Recognition of semiconductor defect patterns using spatial filtering and spectral clustering Expert Systems with Applications 34 3 2008 1914 1923
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1914-1923
    • Wang, C.-H.1
  • 36
    • 35448945640 scopus 로고    scopus 로고
    • Spectral clustering with eigenvector selection
    • Xiang T., Gong S. Spectral clustering with eigenvector selection Pattern Recognition 41 3 2008 1012 1029
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 1012-1029
    • Xiang, T.1    Gong, S.2
  • 38
    • 84905971686 scopus 로고    scopus 로고
    • Image segmentation using spectral clustering of Gaussian mixture models
    • Zeng S., Huang R., Kang Z., Sang N. Image segmentation using spectral clustering of Gaussian mixture models Neurocomputing 144 2014 346 356
    • (2014) Neurocomputing , vol.144 , pp. 346-356
    • Zeng, S.1    Huang, R.2    Kang, Z.3    Sang, N.4
  • 39
    • 78649332752 scopus 로고    scopus 로고
    • Local density adaptive similarity measurement for spectral clustering
    • Zhang X., Li J., Yu H. Local density adaptive similarity measurement for spectral clustering Pattern Recognition Letters 32 2011 352 358
    • (2011) Pattern Recognition Letters , vol.32 , pp. 352-358
    • Zhang, X.1    Li, J.2    Yu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.