메뉴 건너뛰기




Volumn 144, Issue , 2014, Pages 448-462

Latent tree models for rounding in spectral clustering

Author keywords

Latent tree models; Rounding; Spectral clustering

Indexed keywords

DATA HANDLING; EIGENVALUES AND EIGENFUNCTIONS; FORESTRY;

EID: 84906056065     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.04.030     Document Type: Article
Times cited : (7)

References (22)
  • 1
    • 84886038113 scopus 로고    scopus 로고
    • A Model-based approach to rounding in spectral clustering
    • Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence
    • L.K.M. Poon, A.H. Liu, T. Liu, N.L. Zhang, A Model-based approach to rounding in spectral clustering, in: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 2012, pp. 685-694.
    • (2012) , pp. 685-694
    • Poon, L.K.M.1    Liu, A.H.2    Liu, T.3    Zhang, N.L.4
  • 2
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Stat. Comput. 2007, 17:395-416.
    • (2007) Stat. Comput. , vol.17 , pp. 395-416
    • von Luxburg, U.1
  • 3
    • 0026985087 scopus 로고
    • A New approach to effective circuit clustering
    • Proceedings of the IEEE International Conference on Computer Aided Design
    • L. Hagen, A.B. Kahng, A New approach to effective circuit clustering, in: Proceedings of the IEEE International Conference on Computer Aided Design, 1992, pp. 422-427.
    • (1992) , pp. 422-427
    • Hagen, L.1    Kahng, A.B.2
  • 4
    • 0030646927 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • J. Shi, J. Malik, Normalized cuts and image segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 731-737.
    • (1997) , pp. 731-737
    • Shi, J.1    Malik, J.2
  • 5
    • 21844490712 scopus 로고
    • A projection technique for partitioning the nodes of a graph
    • Rendl F., Wolkowicz H. A projection technique for partitioning the nodes of a graph. Ann. Operat. Res. 1995, 58(3):155-179.
    • (1995) Ann. Operat. Res. , vol.58 , Issue.3 , pp. 155-179
    • Rendl, F.1    Wolkowicz, H.2
  • 6
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • Bach F.R., Jordan M.I. Learning spectral clustering, with application to speech separation. J. Mach. Learn. Res. 2006, 7:1963-2001.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 7
    • 59349084916 scopus 로고    scopus 로고
    • Multiway spectral clustering. a margin-based perspective
    • Zhang Z., Jordan M.I. Multiway spectral clustering. a margin-based perspective. Stat. Sci. 2008, 23(3):383-403.
    • (2008) Stat. Sci. , vol.23 , Issue.3 , pp. 383-403
    • Zhang, Z.1    Jordan, M.I.2
  • 8
    • 79953051126 scopus 로고    scopus 로고
    • Spectral clustering with more than K eigenvectors
    • Rebagliati N., Verri A. Spectral clustering with more than K eigenvectors. Neurocomputing 2011, 74:1391-1401.
    • (2011) Neurocomputing , vol.74 , pp. 1391-1401
    • Rebagliati, N.1    Verri, A.2
  • 9
    • 84898995558 scopus 로고    scopus 로고
    • Self-tuning spectral clustering
    • Advances in Neural Information Processing Systems
    • L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, in: Advances in Neural Information Processing Systems, 2005.
    • (2005)
    • Zelnik-Manor, L.1    Perona, P.2
  • 10
    • 35448945640 scopus 로고    scopus 로고
    • Spectral clustering with eigenvector selection
    • Xiang T., Gong S. Spectral clustering with eigenvector selection. Pattern Recognit. 2008, 41(3):1012-1029.
    • (2008) Pattern Recognit. , vol.41 , Issue.3 , pp. 1012-1029
    • Xiang, T.1    Gong, S.2
  • 11
    • 77952586130 scopus 로고    scopus 로고
    • Spectral clustering with eigenvector selection based on entropy ranking
    • Zhao F., Jiao L., Liu H., Gao X., Gong M. Spectral clustering with eigenvector selection based on entropy ranking. Neurocomputing 2010, 73:1704-1717.
    • (2010) Neurocomputing , vol.73 , pp. 1704-1717
    • Zhao, F.1    Jiao, L.2    Liu, H.3    Gao, X.4    Gong, M.5
  • 12
    • 84906062575 scopus 로고    scopus 로고
    • Spectral Chinese restaurant processes: nonparametric clustering based on similarities
    • Fourteenth International Conference on Artificial Intelligence and Statistics
    • R. Socher, A. Maas, C.D. Manning, Spectral Chinese restaurant processes: nonparametric clustering based on similarities, in: Fourteenth International Conference on Artificial Intelligence and Statistics, 2011.
    • (2011)
    • Socher, R.1    Maas, A.2    Manning, C.D.3
  • 13
    • 21844479166 scopus 로고    scopus 로고
    • Hierarchical latent class models for cluster analysis
    • Zhang N.L. Hierarchical latent class models for cluster analysis. J. Mach. Learn. Res. 2004, 5:697-723.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 697-723
    • Zhang, N.L.1
  • 14
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clusterings: analysis and an algorithm
    • Advances in Neural Information Processing Systems
    • A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clusterings: analysis and an algorithm, in: Advances in Neural Information Processing Systems, vol. 14, 2002.
    • (2002) , vol.14
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978, 6(2):461-464.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 17
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66(336):846-850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 18
    • 33947156744 scopus 로고    scopus 로고
    • Comparing clusterings-an information based distance
    • Meilǎ M. Comparing clusterings-an information based distance. J. Multivar. Anal. 2007, 98:873-895.
    • (2007) J. Multivar. Anal. , vol.98 , pp. 873-895
    • Meilǎ, M.1
  • 19
    • 80054122982 scopus 로고    scopus 로고
    • Model-based multidimensional clustering of categorical data
    • Chen T., Zhang N.L., Liu T., Poon K.M., Wang Y. Model-based multidimensional clustering of categorical data. Artif. Intell. 2012, 176:2246-2269.
    • (2012) Artif. Intell. , vol.176 , pp. 2246-2269
    • Chen, T.1    Zhang, N.L.2    Liu, T.3    Poon, K.M.4    Wang, Y.5
  • 20
    • 84906062563 scopus 로고    scopus 로고
    • MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report 504, Department of Statistics, University of Washington (revised 2009)
    • C. Fraley, A.E. Raftery, MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report 504, Department of Statistics, University of Washington (revised 2009), 2006.
    • (2006)
    • Fraley, C.1    Raftery, A.E.2
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.