-
2
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
T. Dietterich, S. Becker, Z. Ghahramani (Eds.), MIT Press
-
A. Ng, M. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: T. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, vol. 14, MIT Press, 2002, pp. 849-856.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 849-856
-
-
Ng, A.1
Jordan, M.2
Weiss, Y.3
-
4
-
-
34548583274
-
A tutorial on spectral clustering
-
U. von Luxburg, A tutorial on spectral clustering, J. Stat. Comput. 17 (4) (2007) 395-416.
-
(2007)
J. Stat. Comput.
, vol.17
, Issue.4
, pp. 395-416
-
-
Von Luxburg, U.1
-
5
-
-
34548025132
-
A survey of kernel and spectral methods for clustering
-
M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for clustering, Pattern Recognit. 41 (1) (2008) 176-190.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.1
, pp. 176-190
-
-
Filippone, M.1
Camastra, F.2
Masulli, F.3
Rovetta, S.4
-
7
-
-
4243128193
-
On clusterings: Good, bad and spectral
-
R. Kannan, S. Vempala, A. Vetta, On clusterings: good, bad and spectral, J. ACM 51 (3) (2004) 497-515.
-
(2004)
J. ACM
, vol.51
, Issue.3
, pp. 497-515
-
-
Kannan, R.1
Vempala, S.2
Vetta, A.3
-
8
-
-
35448945640
-
Spectral clustering with eigenvector selection
-
T. Xiang, S. Gong, Spectral clustering with eigenvector selection, Pattern Recognit. 41 (3) (2008) 1012-1029.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.3
, pp. 1012-1029
-
-
Xiang, T.1
Gong, S.2
-
9
-
-
73249143874
-
Segmentation and classification of polarimetric SAR data using spectral graph partitioning
-
K. Ersahin, I.G. Cumming, R.K. Ward, Segmentation and classification of polarimetric SAR data using spectral graph partitioning, IEEE Trans. Geosci. Remote Sens. 48 (1) (2010) 164-174.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.1
, pp. 164-174
-
-
Ersahin, K.1
Cumming, I.G.2
Ward, R.K.3
-
10
-
-
84857679726
-
A hybrid method combining som-based clustering and object-based analysis for identifying land in good agricultural condition
-
K. Taşdemir, P. Milenov, B. Tapsall, A hybrid method combining som-based clustering and object-based analysis for identifying land in good agricultural condition, Comput. Electron. Agric. 83 (0) (2012) 92-101, doi: doi:10.1016/j.compag.2012.01.017.
-
(2012)
Comput. Electron. Agric.
, vol.83
, Issue.0
, pp. 92-101
-
-
Taşdemir, K.1
Milenov, P.2
Tapsall, B.3
-
11
-
-
79551528802
-
Parallel spectral clustering in distributed systems
-
W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, E.Y. Chang, Parallel spectral clustering in distributed systems, IEEE Trans. Pattern Anal. Mach. Intell. 33 (3) (2011) 568-586.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.3
, pp. 568-586
-
-
Chen, W.-Y.1
Song, Y.2
Bai, H.3
Lin, C.-J.4
Chang, E.Y.5
-
12
-
-
0742286179
-
Spectral grouping using the Nyström method
-
C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral grouping using the Nyström method, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2) (2004) 214-225.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.2
, pp. 214-225
-
-
Fowlkes, C.1
Belongie, S.2
Chung, F.3
Malik, J.4
-
13
-
-
33746922014
-
Approximate clustering in very large relational data
-
J. Bezdek, R. Hathaway, J. Huband, C. Leckie, R. Kotagiri, Approximate clustering in very large relational data, Int. J. Intell. Syst. 21 (8) (2006) 817-841.
-
(2006)
Int. J. Intell. Syst.
, vol.21
, Issue.8
, pp. 817-841
-
-
Bezdek, J.1
Hathaway, R.2
Huband, J.3
Leckie, C.4
Kotagiri, R.5
-
14
-
-
40049083817
-
Selective sampling for approximate clustering of very large datasets
-
L. Wang, J. Bezdek, C. Leckie, R. Kotagiri, Selective sampling for approximate clustering of very large datasets, Int. J. Intell. Syst. 23 (3) (2008) 313-331.
-
(2008)
Int. J. Intell. Syst.
, vol.23
, Issue.3
, pp. 313-331
-
-
Wang, L.1
Bezdek, J.2
Leckie, C.3
Kotagiri, R.4
-
15
-
-
67650686504
-
Approximate spectral clustering
-
T. Theeramunkong, B. Kijsirikul, N. Cercone, T.B. Ho (Eds.), PAKDD, Springer, Berlin, Heidelberg
-
L. Wang, C. Leckie, K. Ramamohanarao, J.C. Bezdek, Approximate spectral clustering, in: T. Theeramunkong, B. Kijsirikul, N. Cercone, T.B. Ho (Eds.), PAKDD, Lecture Notes in Computer Science, vol. 5476, Springer, Berlin, Heidelberg, 2009, pp. 134-146.
-
(2009)
Lecture Notes in Computer Science
, vol.5476
, pp. 134-146
-
-
Wang, L.1
Leckie, C.2
Ramamohanarao, K.3
Bezdek, J.C.4
-
16
-
-
70350657266
-
Fast approximate spectral clustering
-
D. Yan, L. Huang, M.I. Jordan, Fast approximate spectral clustering, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'09, 2009, pp. 907-916.
-
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'09, 2009
, pp. 907-916
-
-
Yan, D.1
Huang, L.2
Jordan, M.I.3
-
17
-
-
77957979677
-
Approximate pairwise clustering for large data sets via sampling plus extension
-
L. Wang, C. Leckie, R. Kotagiri, J. Bezdek, Approximate pairwise clustering for large data sets via sampling plus extension, Pattern Recognit. 44 (2) (2011) 222-235.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.2
, pp. 222-235
-
-
Wang, L.1
Leckie, C.2
Kotagiri, R.3
Bezdek, J.4
-
18
-
-
84859421733
-
Vector quantization based approximate spectral clustering of large datasets
-
K. Taşdemir, Vector quantization based approximate spectral clustering of large datasets, Pattern Recognit. 45 (8) (2012) 3034-3044.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.8
, pp. 3034-3044
-
-
Taşdemir, K.1
-
19
-
-
58849142031
-
Spectral methods in machine learning and new strategies for very large datasets
-
M.-A. Belabbas, P.J. Wolfe, Spectral methods in machine learning and new strategies for very large datasets, Proc. Natl. Acad. Sci. (PNAS) 106 (2) (2009) 369-374.
-
(2009)
Proc. Natl. Acad. Sci. (PNAS)
, vol.106
, Issue.2
, pp. 369-374
-
-
Belabbas, M.-A.1
Wolfe, P.J.2
-
20
-
-
0003410791
-
-
Springer-Verlag, Berlin, Heidelberg
-
T. Kohonen, Self-Organizing Maps, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 1997.
-
(1997)
Self-Organizing Maps, 2nd Ed.
-
-
Kohonen, T.1
-
21
-
-
0027632248
-
Neural gas network for vector quantization and its application to time series prediction
-
T. Martinetz, S. Berkovich, K. Schulten, Neural gas network for vector quantization and its application to time series prediction, IEEE Trans. Neural Netw. 4 (4) (1993) 558-569.
-
(1993)
IEEE Trans. Neural Netw.
, vol.4
, Issue.4
, pp. 558-569
-
-
Martinetz, T.1
Berkovich, S.2
Schulten, K.3
-
22
-
-
84969135721
-
k-means + +: The advantages of careful seeding
-
D. Arthur, S. Vassilvitskii, k-means + + : the advantages of careful seeding, in: SODA'07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, 7-9 January, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007, pp. 1027-1035.
-
SODA'07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, 7-9 January, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
23
-
-
67349242966
-
Exploiting data topology in visualization and clustering of self-organizing maps
-
K. Taşdemir, E. Merényi, Exploiting data topology in visualization and clustering of self-organizing maps, IEEE Trans. Neural Netw. 20 (4) (2009) 549-562.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.4
, pp. 549-562
-
-
Taşdemir, K.1
Merényi, E.2
-
25
-
-
0037379640
-
Neural maps in remote sensing image analysis
-
Special Issue on Self-Organizing Maps for Analysis of Complex Scientific Data
-
T. Villmann, E. Merényi, B. Hammer, Neural maps in remote sensing image analysis, Neural Netw. (Special Issue on Self-Organizing Maps for Analysis of Complex Scientific Data) 3-4 (16) (2003) 389-403.
-
(2003)
Neural Netw.
, vol.3-4
, Issue.16
, pp. 389-403
-
-
Villmann, T.1
Merényi, E.2
Hammer, B.3
-
26
-
-
34748844548
-
Knowledge discovery in urban environments from fused multi-dimensional imagery
-
P. Gamba, M. Crawford (Eds.), IEEE Catalog number 07EX1577
-
E. Merényi, B. Csathó, K. Taşdemir, Knowledge discovery in urban environments from fused multi-dimensional imagery, in: P. Gamba, M. Crawford (Eds.), Proceedings of the 4th IEEE GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (URBAN 2007), Paris, France, 11-13 April 2007, IEEE Catalog number 07EX1577, 2007.
-
(2007)
Proceedings of the 4th IEEE GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (URBAN 2007), Paris, France, 11-13 April 2007
-
-
Merényi, E.1
Csathó, B.2
Taşdemir, K.3
-
28
-
-
0028204732
-
Topology representing networks
-
T. Martinetz, K. Schulten, Topology representing networks, Neural Netw. 7 (3) (1993) 507-522.
-
(1993)
Neural Netw.
, vol.7
, Issue.3
, pp. 507-522
-
-
Martinetz, T.1
Schulten, K.2
-
30
-
-
0034593060
-
Towards scalable support vector machines using squashing
-
D. Pavlov, D. Chudova, P. Smyth, Towards scalable support vector machines using squashing, in: Proceedings of the ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000, pp. 295-299.
-
Proceedings of the ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000
, pp. 295-299
-
-
Pavlov, D.1
Chudova, D.2
Smyth, P.3
-
31
-
-
0002515248
-
Efficient progressive sampling
-
F.J. Provost, D. Jensen, T. Oates, Efficient progressive sampling, in: Knowledge Discovery and Data Mining, 1999, pp. 23-32.
-
Knowledge Discovery and Data Mining, 1999
, pp. 23-32
-
-
Provost, F.J.1
Jensen, D.2
Oates, T.3
-
32
-
-
33646111187
-
Scalable visual assessment of cluster tendency for large data sets
-
R.J. Hathaway, J.C. Bezdek, J.M. Huband, Scalable visual assessment of cluster tendency for large data sets, Pattern Recognit. 39 (7) (2006) 1315-1324.
-
(2006)
Pattern Recognit.
, vol.39
, Issue.7
, pp. 1315-1324
-
-
Hathaway, R.J.1
Bezdek, J.C.2
Huband, J.M.3
-
34
-
-
78649332752
-
Local density adaptive similarity measurement for spectral clustering
-
X. Zhang, J. Li, H. Yu, Local density adaptive similarity measurement for spectral clustering, Pattern Recognit. Lett. 32 (2) (2011) 352-358.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.2
, pp. 352-358
-
-
Zhang, X.1
Li, J.2
Yu, H.3
-
35
-
-
84894271938
-
A hybrid similarity measure for approximate spectral clustering of remote sensing images
-
K. Taşdemir, A hybrid similarity measure for approximate spectral clustering of remote sensing images, in: 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2013, pp. 3136-3139. doi: http://dx.doi.org/10.1109/IGARSS.2013.6723491.
-
(2013)
2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 3136-3139
-
-
Taşdemir, K.1
-
36
-
-
67650299342
-
Learning highly structured manifolds: Harnessing the power of SOMs
-
M. Biehl, B. Hammer, M. Verleysen, T. Villmann (Eds.), Similarity Based Clustering, Springer, Berlin, Heidelberg
-
E. Merényi, K. Taşdemir, L. Zhang, Learning highly structured manifolds: harnessing the power of SOMs, in: M. Biehl, B. Hammer, M. Verleysen, T. Villmann (Eds.), Similarity Based Clustering, Lecture Notes in Artificial Intelligence, vol. 5400, Springer, Berlin, Heidelberg, 2009, pp. 138-168.
-
(2009)
Lecture Notes in Artificial Intelligence
, vol.5400
, pp. 138-168
-
-
Merényi, E.1
Taşdemir, K.2
Zhang, L.3
-
38
-
-
19344374461
-
Self-organizing information fusion and hierarchical knowledge discovery: A new framework using ARTMAP neural networks
-
G.A. Carpenter, S. Martens, O.J. Ogas, Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks, Neural Netw. 18 (3) (2005) 287-295.
-
(2005)
Neural Netw.
, vol.18
, Issue.3
, pp. 287-295
-
-
Carpenter, G.A.1
Martens, S.2
Ogas, O.J.3
-
40
-
-
70450190606
-
On the use of the adjusted rand index as a metric for evaluating supervised classification
-
Limassol, Cyprus, 14-17 September
-
J. Santos, M. Embrechts, On the use of the adjusted rand index as a metric for evaluating supervised classification, in: International Conference on Artificial Neural Networks-ICANN (2009), Limassol, Cyprus, 14-17 September 2009, pp. 175-184.
-
(2009)
International Conference on Artificial Neural Networks-ICANN (2009)
, pp. 175-184
-
-
Santos, J.1
Embrechts, M.2
-
41
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc. 66 (1971) 846-850.
-
(1971)
J. Am. Stat. Assoc.
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
43
-
-
79960700172
-
A validity index for prototype-based clustering of data sets with complex cluster structures
-
K. Taşdemir, E. Merényi, A validity index for prototype-based clustering of data sets with complex cluster structures, IEEE Trans. Syst. Man Cybern. Part B 41 (4) (2011) 1039-1053.
-
(2011)
IEEE Trans. Syst. Man Cybern. Part B
, vol.41
, Issue.4
, pp. 1039-1053
-
-
Taşdemir, K.1
Merényi, E.2
-
44
-
-
0003430544
-
-
John Wiley & Sons, Inc., Hoboken, New Jersey
-
L. Kaufman, P. Rousseauw, Finding Groups in Data, John Wiley & Sons, Inc., Hoboken, New Jersey, 1990.
-
(1990)
Finding Groups in Data
-
-
Kaufman, L.1
Rousseauw, P.2
-
45
-
-
84972893020
-
A dendrite method for cluster analysis
-
T. Calinski, J. Harabasz, A dendrite method for cluster analysis, Commun. Stat. 3 (1) (1974) 1-27.
-
(1974)
Commun. Stat.
, vol.3
, Issue.1
, pp. 1-27
-
-
Calinski, T.1
Harabasz, J.2
-
48
-
-
2142687208
-
A unified framework for model-based clustering
-
S. Zhong, J. Ghosh, A unified framework for model-based clustering, J. Mach. Learn. Res. 4 (2003) 1001-1037.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 1001-1037
-
-
Zhong, S.1
Ghosh, J.2
-
49
-
-
84890037547
-
An accelerated k-means algorithm based on adaptive distances
-
W.A. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, J. Kunze (Eds.), Springer, Berlin, Heidelberg
-
H.-J. Mucha, H.-G. Bartel, An accelerated k-means algorithm based on adaptive distances, in: W.A. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, J. Kunze (Eds.), Challenges at the Interface of Data Analysis, Computer Science, and Optimization, Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Berlin, Heidelberg, 2012, pp. 37-47.
-
(2012)
Challenges at the Interface of Data Analysis, Computer Science, and Optimization, Studies in Classification, Data Analysis, and Knowledge Organization
, pp. 37-47
-
-
Mucha, H.-J.1
Bartel, H.-G.2
-
50
-
-
39949085751
-
A density-based cluster validity approach using multi-representatives
-
M. Halkidi, M. Vazirgiannis, A density-based cluster validity approach using multi-representatives, Pattern Recognit. Lett. 6 (2008) 773-786.
-
(2008)
Pattern Recognit. Lett.
, vol.6
, pp. 773-786
-
-
Halkidi, M.1
Vazirgiannis, M.2
-
51
-
-
84941155240
-
Well separated clusters and optimal fuzzy partitions
-
J.C. Dunn, Well separated clusters and optimal fuzzy partitions, J. Cybern. 4 (1974) 95-104.
-
(1974)
J. Cybern.
, vol.4
, pp. 95-104
-
-
Dunn, J.C.1
-
52
-
-
25844500444
-
New indices for cluster validity assessment
-
M. Kim, R.S. Ramakrishna, New indices for cluster validity assessment, Pattern Recognit. Lett. 26 (15) (2005) 2353-2363.
-
(2005)
Pattern Recognit. Lett.
, vol.26
, Issue.15
, pp. 2353-2363
-
-
Kim, M.1
Ramakrishna, R.S.2
-
53
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
G.W. Milligan, M.C. Cooper, An examination of procedures for determining the number of clusters in a data set, Psychometrika 50 (1985) 159-179.
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
54
-
-
0036937614
-
Performance evaluation of some clustering algorithms and validity indices
-
U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices, IEEE Trans. Pattern Anal. Mach. Intell. 24 (12) (2002) 1650-1654.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.12
, pp. 1650-1654
-
-
Maulik, U.1
Bandyopadhyay, S.2
-
55
-
-
4544263146
-
On cluster validity index for estimation of the optimal number of fuzzy clusters
-
D. Kim, K.H. Lee, D. Lee, On cluster validity index for estimation of the optimal number of fuzzy clusters, Pattern Recognit. 37 (2004) 2009-2025.
-
(2004)
Pattern Recognit.
, vol.37
, pp. 2009-2025
-
-
Kim, D.1
Lee, K.H.2
Lee, D.3
-
56
-
-
57049150848
-
A robust methodology for comparing performances of clustering validity criteria
-
L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, A robust methodology for comparing performances of clustering validity criteria, in: Lecture Notes in Artificial Intelligence (LNAI), vol. 5249, 2008, pp. 237-247.
-
(2008)
Lecture Notes in Artificial Intelligence (LNAI)
, vol.5249
, pp. 237-247
-
-
Vendramin, L.1
Campello, R.J.G.B.2
Hruschka, E.R.3
|