메뉴 건너뛰기




Volumn 48, Issue 4, 2015, Pages 1465-1477

Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures

Author keywords

Approximate spectral clustering; Cluster validity indices; Geodesic distances; Hybrid similarity measures; Manifold learning

Indexed keywords

CLUSTERING ALGORITHMS; GEODESY; LARGE DATASET; REMOTE SENSING; TOPOLOGY;

EID: 84920663980     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.10.023     Document Type: Article
Times cited : (50)

References (56)
  • 2
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. Dietterich, S. Becker, Z. Ghahramani (Eds.), MIT Press
    • A. Ng, M. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: T. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, vol. 14, MIT Press, 2002, pp. 849-856.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 849-856
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 4
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg, A tutorial on spectral clustering, J. Stat. Comput. 17 (4) (2007) 395-416.
    • (2007) J. Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 5
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for clustering, Pattern Recognit. 41 (1) (2008) 176-190.
    • (2008) Pattern Recognit. , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 7
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: Good, bad and spectral
    • R. Kannan, S. Vempala, A. Vetta, On clusterings: good, bad and spectral, J. ACM 51 (3) (2004) 497-515.
    • (2004) J. ACM , vol.51 , Issue.3 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 8
    • 35448945640 scopus 로고    scopus 로고
    • Spectral clustering with eigenvector selection
    • T. Xiang, S. Gong, Spectral clustering with eigenvector selection, Pattern Recognit. 41 (3) (2008) 1012-1029.
    • (2008) Pattern Recognit. , vol.41 , Issue.3 , pp. 1012-1029
    • Xiang, T.1    Gong, S.2
  • 9
    • 73249143874 scopus 로고    scopus 로고
    • Segmentation and classification of polarimetric SAR data using spectral graph partitioning
    • K. Ersahin, I.G. Cumming, R.K. Ward, Segmentation and classification of polarimetric SAR data using spectral graph partitioning, IEEE Trans. Geosci. Remote Sens. 48 (1) (2010) 164-174.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.1 , pp. 164-174
    • Ersahin, K.1    Cumming, I.G.2    Ward, R.K.3
  • 10
    • 84857679726 scopus 로고    scopus 로고
    • A hybrid method combining som-based clustering and object-based analysis for identifying land in good agricultural condition
    • K. Taşdemir, P. Milenov, B. Tapsall, A hybrid method combining som-based clustering and object-based analysis for identifying land in good agricultural condition, Comput. Electron. Agric. 83 (0) (2012) 92-101, doi: doi:10.1016/j.compag.2012.01.017.
    • (2012) Comput. Electron. Agric. , vol.83 , Issue.0 , pp. 92-101
    • Taşdemir, K.1    Milenov, P.2    Tapsall, B.3
  • 14
    • 40049083817 scopus 로고    scopus 로고
    • Selective sampling for approximate clustering of very large datasets
    • L. Wang, J. Bezdek, C. Leckie, R. Kotagiri, Selective sampling for approximate clustering of very large datasets, Int. J. Intell. Syst. 23 (3) (2008) 313-331.
    • (2008) Int. J. Intell. Syst. , vol.23 , Issue.3 , pp. 313-331
    • Wang, L.1    Bezdek, J.2    Leckie, C.3    Kotagiri, R.4
  • 15
    • 67650686504 scopus 로고    scopus 로고
    • Approximate spectral clustering
    • T. Theeramunkong, B. Kijsirikul, N. Cercone, T.B. Ho (Eds.), PAKDD, Springer, Berlin, Heidelberg
    • L. Wang, C. Leckie, K. Ramamohanarao, J.C. Bezdek, Approximate spectral clustering, in: T. Theeramunkong, B. Kijsirikul, N. Cercone, T.B. Ho (Eds.), PAKDD, Lecture Notes in Computer Science, vol. 5476, Springer, Berlin, Heidelberg, 2009, pp. 134-146.
    • (2009) Lecture Notes in Computer Science , vol.5476 , pp. 134-146
    • Wang, L.1    Leckie, C.2    Ramamohanarao, K.3    Bezdek, J.C.4
  • 17
    • 77957979677 scopus 로고    scopus 로고
    • Approximate pairwise clustering for large data sets via sampling plus extension
    • L. Wang, C. Leckie, R. Kotagiri, J. Bezdek, Approximate pairwise clustering for large data sets via sampling plus extension, Pattern Recognit. 44 (2) (2011) 222-235.
    • (2011) Pattern Recognit. , vol.44 , Issue.2 , pp. 222-235
    • Wang, L.1    Leckie, C.2    Kotagiri, R.3    Bezdek, J.4
  • 18
    • 84859421733 scopus 로고    scopus 로고
    • Vector quantization based approximate spectral clustering of large datasets
    • K. Taşdemir, Vector quantization based approximate spectral clustering of large datasets, Pattern Recognit. 45 (8) (2012) 3034-3044.
    • (2012) Pattern Recognit. , vol.45 , Issue.8 , pp. 3034-3044
    • Taşdemir, K.1
  • 19
    • 58849142031 scopus 로고    scopus 로고
    • Spectral methods in machine learning and new strategies for very large datasets
    • M.-A. Belabbas, P.J. Wolfe, Spectral methods in machine learning and new strategies for very large datasets, Proc. Natl. Acad. Sci. (PNAS) 106 (2) (2009) 369-374.
    • (2009) Proc. Natl. Acad. Sci. (PNAS) , vol.106 , Issue.2 , pp. 369-374
    • Belabbas, M.-A.1    Wolfe, P.J.2
  • 21
    • 0027632248 scopus 로고
    • Neural gas network for vector quantization and its application to time series prediction
    • T. Martinetz, S. Berkovich, K. Schulten, Neural gas network for vector quantization and its application to time series prediction, IEEE Trans. Neural Netw. 4 (4) (1993) 558-569.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 23
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of self-organizing maps
    • K. Taşdemir, E. Merényi, Exploiting data topology in visualization and clustering of self-organizing maps, IEEE Trans. Neural Netw. 20 (4) (2009) 549-562.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.4 , pp. 549-562
    • Taşdemir, K.1    Merényi, E.2
  • 25
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • Special Issue on Self-Organizing Maps for Analysis of Complex Scientific Data
    • T. Villmann, E. Merényi, B. Hammer, Neural maps in remote sensing image analysis, Neural Netw. (Special Issue on Self-Organizing Maps for Analysis of Complex Scientific Data) 3-4 (16) (2003) 389-403.
    • (2003) Neural Netw. , vol.3-4 , Issue.16 , pp. 389-403
    • Villmann, T.1    Merényi, E.2    Hammer, B.3
  • 28
    • 0028204732 scopus 로고
    • Topology representing networks
    • T. Martinetz, K. Schulten, Topology representing networks, Neural Netw. 7 (3) (1993) 507-522.
    • (1993) Neural Netw. , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 32
    • 33646111187 scopus 로고    scopus 로고
    • Scalable visual assessment of cluster tendency for large data sets
    • R.J. Hathaway, J.C. Bezdek, J.M. Huband, Scalable visual assessment of cluster tendency for large data sets, Pattern Recognit. 39 (7) (2006) 1315-1324.
    • (2006) Pattern Recognit. , vol.39 , Issue.7 , pp. 1315-1324
    • Hathaway, R.J.1    Bezdek, J.C.2    Huband, J.M.3
  • 34
    • 78649332752 scopus 로고    scopus 로고
    • Local density adaptive similarity measurement for spectral clustering
    • X. Zhang, J. Li, H. Yu, Local density adaptive similarity measurement for spectral clustering, Pattern Recognit. Lett. 32 (2) (2011) 352-358.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.2 , pp. 352-358
    • Zhang, X.1    Li, J.2    Yu, H.3
  • 35
    • 84894271938 scopus 로고    scopus 로고
    • A hybrid similarity measure for approximate spectral clustering of remote sensing images
    • K. Taşdemir, A hybrid similarity measure for approximate spectral clustering of remote sensing images, in: 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2013, pp. 3136-3139. doi: http://dx.doi.org/10.1109/IGARSS.2013.6723491.
    • (2013) 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 3136-3139
    • Taşdemir, K.1
  • 36
    • 67650299342 scopus 로고    scopus 로고
    • Learning highly structured manifolds: Harnessing the power of SOMs
    • M. Biehl, B. Hammer, M. Verleysen, T. Villmann (Eds.), Similarity Based Clustering, Springer, Berlin, Heidelberg
    • E. Merényi, K. Taşdemir, L. Zhang, Learning highly structured manifolds: harnessing the power of SOMs, in: M. Biehl, B. Hammer, M. Verleysen, T. Villmann (Eds.), Similarity Based Clustering, Lecture Notes in Artificial Intelligence, vol. 5400, Springer, Berlin, Heidelberg, 2009, pp. 138-168.
    • (2009) Lecture Notes in Artificial Intelligence , vol.5400 , pp. 138-168
    • Merényi, E.1    Taşdemir, K.2    Zhang, L.3
  • 38
    • 19344374461 scopus 로고    scopus 로고
    • Self-organizing information fusion and hierarchical knowledge discovery: A new framework using ARTMAP neural networks
    • G.A. Carpenter, S. Martens, O.J. Ogas, Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks, Neural Netw. 18 (3) (2005) 287-295.
    • (2005) Neural Netw. , vol.18 , Issue.3 , pp. 287-295
    • Carpenter, G.A.1    Martens, S.2    Ogas, O.J.3
  • 39
  • 40
    • 70450190606 scopus 로고    scopus 로고
    • On the use of the adjusted rand index as a metric for evaluating supervised classification
    • Limassol, Cyprus, 14-17 September
    • J. Santos, M. Embrechts, On the use of the adjusted rand index as a metric for evaluating supervised classification, in: International Conference on Artificial Neural Networks-ICANN (2009), Limassol, Cyprus, 14-17 September 2009, pp. 175-184.
    • (2009) International Conference on Artificial Neural Networks-ICANN (2009) , pp. 175-184
    • Santos, J.1    Embrechts, M.2
  • 41
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc. 66 (1971) 846-850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 43
    • 79960700172 scopus 로고    scopus 로고
    • A validity index for prototype-based clustering of data sets with complex cluster structures
    • K. Taşdemir, E. Merényi, A validity index for prototype-based clustering of data sets with complex cluster structures, IEEE Trans. Syst. Man Cybern. Part B 41 (4) (2011) 1039-1053.
    • (2011) IEEE Trans. Syst. Man Cybern. Part B , vol.41 , Issue.4 , pp. 1039-1053
    • Taşdemir, K.1    Merényi, E.2
  • 45
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • T. Calinski, J. Harabasz, A dendrite method for cluster analysis, Commun. Stat. 3 (1) (1974) 1-27.
    • (1974) Commun. Stat. , vol.3 , Issue.1 , pp. 1-27
    • Calinski, T.1    Harabasz, J.2
  • 48
    • 2142687208 scopus 로고    scopus 로고
    • A unified framework for model-based clustering
    • S. Zhong, J. Ghosh, A unified framework for model-based clustering, J. Mach. Learn. Res. 4 (2003) 1001-1037.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2
  • 50
    • 39949085751 scopus 로고    scopus 로고
    • A density-based cluster validity approach using multi-representatives
    • M. Halkidi, M. Vazirgiannis, A density-based cluster validity approach using multi-representatives, Pattern Recognit. Lett. 6 (2008) 773-786.
    • (2008) Pattern Recognit. Lett. , vol.6 , pp. 773-786
    • Halkidi, M.1    Vazirgiannis, M.2
  • 51
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J.C. Dunn, Well separated clusters and optimal fuzzy partitions, J. Cybern. 4 (1974) 95-104.
    • (1974) J. Cybern. , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 52
    • 25844500444 scopus 로고    scopus 로고
    • New indices for cluster validity assessment
    • M. Kim, R.S. Ramakrishna, New indices for cluster validity assessment, Pattern Recognit. Lett. 26 (15) (2005) 2353-2363.
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.15 , pp. 2353-2363
    • Kim, M.1    Ramakrishna, R.S.2
  • 53
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G.W. Milligan, M.C. Cooper, An examination of procedures for determining the number of clusters in a data set, Psychometrika 50 (1985) 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 54
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices, IEEE Trans. Pattern Anal. Mach. Intell. 24 (12) (2002) 1650-1654.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 55
    • 4544263146 scopus 로고    scopus 로고
    • On cluster validity index for estimation of the optimal number of fuzzy clusters
    • D. Kim, K.H. Lee, D. Lee, On cluster validity index for estimation of the optimal number of fuzzy clusters, Pattern Recognit. 37 (2004) 2009-2025.
    • (2004) Pattern Recognit. , vol.37 , pp. 2009-2025
    • Kim, D.1    Lee, K.H.2    Lee, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.