메뉴 건너뛰기




Volumn 151, Issue P2, 2015, Pages 835-844

A density-based similarity matrix construction for spectral clustering

Author keywords

Affinity matrix; Cluster ensembles; K means algorithm; Non parametric density estimation; Spectral clustering

Indexed keywords

MATRIX ALGEBRA;

EID: 84919478149     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.10.012     Document Type: Article
Times cited : (36)

References (35)
  • 1
    • 78649332752 scopus 로고    scopus 로고
    • Local density adaptive similarity measurement for spectral clustering
    • Zhang X., Li J., Yu H. Local density adaptive similarity measurement for spectral clustering. Pattern Recognit. Lett. 2011, 32:352-358.
    • (2011) Pattern Recognit. Lett. , vol.32 , pp. 352-358
    • Zhang, X.1    Li, J.2    Yu, H.3
  • 2
    • 78649325413 scopus 로고    scopus 로고
    • On defining affinity graph for spectral clustering through ranking on manifold
    • Xia T., Cao J, Zhang Y.-d, Li J-T. On defining affinity graph for spectral clustering through ranking on manifold. Neurocomputing 2009, 72:3203-3211.
    • (2009) Neurocomputing , vol.72 , pp. 3203-3211
    • Xia, T.1    Cao, J.2    Zhang, Y.-D.3    Li, J.-T.4
  • 3
    • 59349084916 scopus 로고    scopus 로고
    • Multiway spectral clustering: a margin-based perspective
    • Zhang Z., Jordan M.I. Multiway spectral clustering: a margin-based perspective. Stat. Sci. 2008, 23(3):383-403.
    • (2008) Stat. Sci. , vol.23 , Issue.3 , pp. 383-403
    • Zhang, Z.1    Jordan, M.I.2
  • 4
    • 33745936031 scopus 로고    scopus 로고
    • A unifying approach to hard and probabilistic clustering
    • Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China,
    • R. Zass, A. Shashua, A unifying approach to hard and probabilistic clustering, in: Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 2005, pp. 294-301.
    • (2005) , pp. 294-301
    • Zass, R.1    Shashua, A.2
  • 5
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Stat. Comput. 2007, 17:395-416.
    • (2007) Stat. Comput. , vol.17 , pp. 395-416
    • von Luxburg, U.1
  • 8
    • 58249083744 scopus 로고    scopus 로고
    • Clustering aggregation by probability accumulation
    • Wang X., Yang C., Zhou J. Clustering aggregation by probability accumulation. Pattern Recognit. 2009, 42(5):668-675.
    • (2009) Pattern Recognit. , vol.42 , Issue.5 , pp. 668-675
    • Wang, X.1    Yang, C.2    Zhou, J.3
  • 9
    • 33947690800 scopus 로고    scopus 로고
    • Kernel density estimation, affinity-based clustering, and typical cuts
    • Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France
    • D. Erdogmus, M.A. Carreira-Perpinan, U. Ozertem, Kernel density estimation, affinity-based clustering, and typical cuts, in: Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 2006.
    • (2006)
    • Erdogmus, D.1    Carreira-Perpinan, M.A.2    Ozertem, U.3
  • 13
    • 84919469909 scopus 로고
    • Asymptotic properties of K-means clustering algorithm as a density estimation procedure
    • Working Paper #2000-80, Sloan School of Management, Massachusetts Institute of Technology,
    • MA. Wong, Asymptotic properties of K-means clustering algorithm as a density estimation procedure, Working Paper #2000-80, Sloan School of Management, Massachusetts Institute of Technology, 1980.
    • (1980)
    • Wong, M.A.1
  • 14
    • 84919464637 scopus 로고    scopus 로고
    • Using the K-means clustering method as a density estimation procedure
    • Working paper #1340-82, Sloan School of Management, Massachusetts Institute of Technology, 1982b.
    • MA. Wong, Using the K-means clustering method as a density estimation procedure, Working paper #1340-82, Sloan School of Management, Massachusetts Institute of Technology, 1982b.
    • Wong, M.A.1
  • 15
    • 0000645837 scopus 로고
    • A hybrid clustering algorithm for identifying high density clusters
    • Wong M.A. A hybrid clustering algorithm for identifying high density clusters. J. Am. Stat. Assoc. 1982, 77:841-847.
    • (1982) J. Am. Stat. Assoc. , vol.77 , pp. 841-847
    • Wong, M.A.1
  • 16
    • 70350277971 scopus 로고
    • Adaptive probability density estimation in lower dimensions using random tessellations
    • Hearne L.B., Wegman E.J. Adaptive probability density estimation in lower dimensions using random tessellations. Comput. Sci. Stat. 1991, 23:241-245.
    • (1991) Comput. Sci. Stat. , vol.23 , pp. 241-245
    • Hearne, L.B.1    Wegman, E.J.2
  • 17
    • 0011987273 scopus 로고
    • Maximum entropy density estimation using random tessellations
    • Hearne L.B., Wegman E.J. Maximum entropy density estimation using random tessellations. Comput. Sci. Stat. 1992, 24:483-487.
    • (1992) Comput. Sci. Stat. , vol.24 , pp. 483-487
    • Hearne, L.B.1    Wegman, E.J.2
  • 18
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clustering using evidence accumulation
    • Fred A.L.N., Jain A.K. Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(6):835-850.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.6 , pp. 835-850
    • Fred, A.L.N.1    Jain, A.K.2
  • 20
    • 0030490122 scopus 로고    scopus 로고
    • Consistency of data-driven histogram methods for density estimation and classification
    • Lugosi G., Nobel A. Consistency of data-driven histogram methods for density estimation and classification. Ann. Stat. 1996, 24(2):687-706.
    • (1996) Ann. Stat. , vol.24 , Issue.2 , pp. 687-706
    • Lugosi, G.1    Nobel, A.2
  • 21
    • 83655191941 scopus 로고    scopus 로고
    • Regularized tessellation density estimation with bootstrap aggregation and complexity penalization
    • Browne M. Regularized tessellation density estimation with bootstrap aggregation and complexity penalization. Pattern Recognit. 2012, 45:1531-1539.
    • (2012) Pattern Recognit. , vol.45 , pp. 1531-1539
    • Browne, M.1
  • 22
    • 84868096867 scopus 로고    scopus 로고
    • Univariate non-parametric density estimation using random linear tesselation
    • Proceedings of the 20th International Conference Information Interfaces (ITI), Pula, Croatia,
    • LB. Hearne, Univariate non-parametric density estimation using random linear tesselation, in: Proceedings of the 20th International Conference Information Interfaces (ITI), Pula, Croatia, 1998, pp. 19-32.
    • (1998) , pp. 19-32
    • Hearne, L.B.1
  • 23
    • 70350304278 scopus 로고
    • Statistical Graphics and Visualization
    • Elsevier, C. Rao (Ed.)
    • Wegman E.J., Carr D.B. Statistical Graphics and Visualization. Handbook of Statistics 9 1993, 857-958. Elsevier. C. Rao (Ed.).
    • (1993) Handbook of Statistics 9 , pp. 857-958
    • Wegman, E.J.1    Carr, D.B.2
  • 25
    • 0001366850 scopus 로고
    • Exact mean integrated squared error
    • Marron J.S., Wand M.P. Exact mean integrated squared error. Ann. Stat. 1992, 20(2):712-736.
    • (1992) Ann. Stat. , vol.20 , Issue.2 , pp. 712-736
    • Marron, J.S.1    Wand, M.P.2
  • 27
    • 0032070312 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation with optimally topology preserving maps
    • Bruske J., Sommer G. Intrinsic dimensionality estimation with optimally topology preserving maps. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20:572-575.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 572-575
    • Bruske, J.1    Sommer, G.2
  • 28
    • 72449173699 scopus 로고    scopus 로고
    • Cluster ensemble selection
    • Fern X., Lin W. Cluster ensemble selection. Stat. Anal. Data Min. 2008, 1(3):128-141.
    • (2008) Stat. Anal. Data Min. , vol.1 , Issue.3 , pp. 128-141
    • Fern, X.1    Lin, W.2
  • 29
    • 84865342831 scopus 로고    scopus 로고
    • Constructing affinity matrix in spectral clustering based on neighbor propagation
    • Li X.-Y., Guo L.-j Constructing affinity matrix in spectral clustering based on neighbor propagation. Neurocomputing 2012, 97:125-130.
    • (2012) Neurocomputing , vol.97 , pp. 125-130
    • Li, X.-Y.1    Guo, L.-J.2
  • 31
    • 84864061176 scopus 로고    scopus 로고
    • MIT Press, Vancouver, BC, Canada, (Advances in Neural Information Processing Systems)
    • Nadler B., Galun M. Fundamental limitations of spectral clustering 2006, 1017-1024. MIT Press, Vancouver, BC, Canada, (Advances in Neural Information Processing Systems).
    • (2006) Fundamental limitations of spectral clustering , pp. 1017-1024
    • Nadler, B.1    Galun, M.2
  • 34
    • 36448962361 scopus 로고    scopus 로고
    • Cumulative voting consensus method for partitions with variable number of clusters
    • Ayad H.G., Kamel M.S. Cumulative voting consensus method for partitions with variable number of clusters. IEEE Pattern Anal. Mach. Intel. 2008, 30(1):160-173.
    • (2008) IEEE Pattern Anal. Mach. Intel. , vol.30 , Issue.1 , pp. 160-173
    • Ayad, H.G.1    Kamel, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.