메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages

Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors

Author keywords

Lignocellulose derived inhibitors; Metabolomics; Myo inositol; Proline; Synthetic biology; Tolerance

Indexed keywords

ALCOHOLS; BACTERIA; CELLULOSE; CELLULOSIC ETHANOL; FITS AND TOLERANCES; GENES; LIGNIN; MICROORGANISMS; SUGARS; YEAST;

EID: 84941625375     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0329-5     Document Type: Article
Times cited : (50)

References (45)
  • 1
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • 1:CAS:528:DC%2BC38Xht1WktL3F
    • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488(7411):320-8.
    • (2012) Nature , vol.488 , Issue.7411 , pp. 320-328
    • Peralta-Yahya, P.P.1    Zhang, F.2    Del Cardayre, S.B.3    Keasling, J.D.4
  • 2
    • 84872814927 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose: Inhibitors and detoxification
    • Jonsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16.
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 16
    • Jonsson, L.J.1    Alriksson, B.2    Nilvebrant, N.O.3
  • 3
    • 84905757148 scopus 로고    scopus 로고
    • Microbial tolerance engineering toward biochemical production: From lignocellulose to products
    • 1:CAS:528:DC%2BC2cXhtlSqu7rN
    • Ling H, Teo W, Chen B, Leong SS, Chang MW. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29:99-106.
    • (2014) Curr Opin Biotechnol , vol.29 , pp. 99-106
    • Ling, H.1    Teo, W.2    Chen, B.3    Leong, S.S.4    Chang, M.W.5
  • 4
    • 84882604844 scopus 로고    scopus 로고
    • Microbial engineering strategies to improve cell viability for biochemical production
    • 1:CAS:528:DC%2BC3sXjslahsbs%3D
    • Lo TM, Teo WS, Ling H, Chen B, Kang A, Chang MW. Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol Adv. 2013;31(6):903-14.
    • (2013) Biotechnol Adv , vol.31 , Issue.6 , pp. 903-914
    • Lo, T.M.1    Teo, W.S.2    Ling, H.3    Chen, B.4    Kang, A.5    Chang, M.W.6
  • 5
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXhsVCntb3P
    • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008;81(4):743-53.
    • (2008) Appl Microbiol Biotechnol , vol.81 , Issue.4 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, B.J.3    Slininger, P.J.4    Weber, S.5
  • 6
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases
    • 1:CAS:528:DC%2BD1MXhs1Whu7fE
    • Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol. 2009;75(24):7631-8.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.24 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 7
    • 84878836519 scopus 로고    scopus 로고
    • Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    • 1:CAS:528:DC%2BC3sXjsFGnt7w%3D
    • Ishii J, Yoshimura K, Hasunuma T, Kondo A. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl Microbiol Biotechnol. 2013;97(6):2597-607.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.6 , pp. 2597-2607
    • Ishii, J.1    Yoshimura, K.2    Hasunuma, T.3    Kondo, A.4
  • 8
    • 84875904201 scopus 로고    scopus 로고
    • Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
    • 1:CAS:528:DC%2BC3sXht1ejur3J
    • Giannattasio S, Guaragnella N, Zdralevic M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol. 2013;4:33.
    • (2013) Front Microbiol , vol.4 , pp. 33
    • Giannattasio, S.1    Guaragnella, N.2    Zdralevic, M.3    Marra, E.4
  • 9
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • 1:CAS:528:DC%2BC38Xhs1eisr3P
    • Tanaka K, Ishii Y, Ogawa J, Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol. 2012;78(22):8161-3.
    • (2012) Appl Environ Microbiol , vol.78 , Issue.22 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 10
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • 1:CAS:528:DC%2BD2sXhtVKls7nO
    • Mollapour M, Piper PW. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol. 2007;27(18):6446-56.
    • (2007) Mol Cell Biol , vol.27 , Issue.18 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 11
    • 0035289692 scopus 로고    scopus 로고
    • Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
    • 1:CAS:528:DC%2BD3MXhslSjs7Y%3D
    • Larsson S, Cassland P, Jonsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol. 2001;67(3):1163-70.
    • (2001) Appl Environ Microbiol , vol.67 , Issue.3 , pp. 1163-1170
    • Larsson, S.1    Cassland, P.2    Jonsson, L.J.3
  • 13
    • 84862777954 scopus 로고    scopus 로고
    • Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes
    • 1:CAS:528:DC%2BC38XhsVyjtbk%3D
    • Lu S, Wang J, Niu Y, Yang J, Zhou J, Yuan Y. Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol Bioeng. 2012;109(7):1651-62.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.7 , pp. 1651-1662
    • Lu, S.1    Wang, J.2    Niu, Y.3    Yang, J.4    Zhou, J.5    Yuan, Y.6
  • 14
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10(1):1475-2859.
    • (2011) Microb Cell Fact , vol.10 , Issue.1 , pp. 1475-2859
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 15
    • 84907494685 scopus 로고    scopus 로고
    • Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2cXhs1Knt73M
    • Liang X, Dickman MB, Becker DF. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae. J Biol Chem. 2014;289(40):27794-806.
    • (2014) J Biol Chem , vol.289 , Issue.40 , pp. 27794-27806
    • Liang, X.1    Dickman, M.B.2    Becker, D.F.3
  • 17
    • 77955430660 scopus 로고    scopus 로고
    • Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering
    • 1:CAS:528:DC%2BC3cXpvFKntro%3D
    • Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM, et al. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol. 2010;149(1-2):52-9.
    • (2010) J Biotechnol , vol.149 , Issue.1-2 , pp. 52-59
    • Hong, M.E.1    Lee, K.S.2    Yu, B.J.3    Sung, Y.J.4    Park, S.M.5    Koo, H.M.6
  • 19
    • 84896703191 scopus 로고    scopus 로고
    • Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress
    • 1:CAS:528:DC%2BC2cXpvVyhuw%3D%3D
    • Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, et al. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol. 2014;98(5):2207-21.
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.5 , pp. 2207-2221
    • Lv, Y.J.1    Wang, X.2    Ma, Q.3    Bai, X.4    Li, B.Z.5    Zhang, W.6
  • 20
    • 33750290903 scopus 로고    scopus 로고
    • Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors
    • 1:CAS:528:DC%2BD28XhtFSnsLnO
    • Liu ZL. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol. 2006;73(1):27-36.
    • (2006) Appl Microbiol Biotechnol , vol.73 , Issue.1 , pp. 27-36
    • Liu, Z.L.1
  • 21
    • 84924412793 scopus 로고    scopus 로고
    • Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents
    • 1:CAS:528:DC%2BC2MXjs1yiurs%3D
    • Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng. 2015;29:46-55.
    • (2015) Metab Eng , vol.29 , pp. 46-55
    • Kim, S.K.1    Jin, Y.S.2    Choi, I.G.3    Park, Y.C.4    Seo, J.H.5
  • 22
    • 84855870922 scopus 로고    scopus 로고
    • Potential drug targets on insomnia and intervention effects of Jujuboside A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach
    • 1:CAS:528:DC%2BC38XptVCjsg%3D%3D
    • Wang X, Yang B, Zhang A, Sun H, Yan G. Potential drug targets on insomnia and intervention effects of Jujuboside A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach. J Proteom. 2012;75(4):1411-27.
    • (2012) J Proteom , vol.75 , Issue.4 , pp. 1411-1427
    • Wang, X.1    Yang, B.2    Zhang, A.3    Sun, H.4    Yan, G.5
  • 23
    • 84875193397 scopus 로고    scopus 로고
    • Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyces cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol
    • 1:CAS:528:DC%2BC3sXktVGht7Y%3D
    • Wang X, Li BZ, Ding M-Z, Zhang WW, Yuan YJ. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyces cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. Omics-a J Integr Biol. 2013;17(3):150-9.
    • (2013) Omics - A J Integr Biol , vol.17 , Issue.3 , pp. 150-159
    • Wang, X.1    Li, B.Z.2    Ding, M.-Z.3    Zhang, W.W.4    Yuan, Y.J.5
  • 24
    • 0037623828 scopus 로고    scopus 로고
    • Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats
    • 1:CAS:528:DC%2BD3sXlsFagur4%3D
    • Horvath IS, Franzen CJ, Taherzadeh MJ, Niklasson C, Liden G. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol. 2003;69(7):4076-86.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.7 , pp. 4076-4086
    • Horvath, I.S.1    Franzen, C.J.2    Taherzadeh, M.J.3    Niklasson, C.4    Liden, G.5
  • 25
    • 66249112812 scopus 로고    scopus 로고
    • Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound
    • 1:CAS:528:DC%2BD1MXntlSgtrc%3D
    • Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol. 2009;75(11):3765-76.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.11 , pp. 3765-3776
    • Lin, F.M.1    Qiao, B.2    Yuan, Y.J.3
  • 26
    • 84863930599 scopus 로고    scopus 로고
    • Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol
    • 1:CAS:528:DC%2BC38XhtVagtLzI
    • Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. Omics-a J Integr Biol. 2012;16(7-8):374-86.
    • (2012) Omics-a J Integr Biol , vol.16 , Issue.7-8 , pp. 374-386
    • Yang, J.1    Ding, M.Z.2    Li, B.Z.3    Liu, Z.L.4    Wang, X.5    Yuan, Y.J.6
  • 27
    • 0021327323 scopus 로고
    • Purification and characteristics of a gamma-glutamyl kinase involved in Escherichia coli proline biosynthesis
    • 1:CAS:528:DyaL2cXhtlCktLk%3D
    • Smith CJ, Deutch AH, Rushlow KE. Purification and characteristics of a gamma-glutamyl kinase involved in Escherichia coli proline biosynthesis. J Bacteriol. 1984;157(2):545-51.
    • (1984) J Bacteriol , vol.157 , Issue.2 , pp. 545-551
    • Smith, C.J.1    Deutch, A.H.2    Rushlow, K.E.3
  • 28
    • 34250855702 scopus 로고    scopus 로고
    • Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance
    • 1:CAS:528:DC%2BD2sXntVOgt7Y%3D
    • Sekine T, Kawaguchi A, Hamano Y, Takagi H. Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol. 2007;73(12):4011-9.
    • (2007) Appl Environ Microbiol , vol.73 , Issue.12 , pp. 4011-4019
    • Sekine, T.1    Kawaguchi, A.2    Hamano, Y.3    Takagi, H.4
  • 29
    • 70349705867 scopus 로고    scopus 로고
    • Proline as a stress protectant in the yeast Saccharomyces cerevisiae: Effects of trehalose and PRO1 gene expression on stress tolerance
    • 1:CAS:528:DC%2BD1MXht1Ghu7%2FE
    • Kaino T, Takagi H. Proline as a stress protectant in the yeast Saccharomyces cerevisiae: effects of trehalose and PRO1 gene expression on stress tolerance. Biosci Biotechnol Biochem. 2009;73(9):2131-5.
    • (2009) Biosci Biotechnol Biochem , vol.73 , Issue.9 , pp. 2131-2135
    • Kaino, T.1    Takagi, H.2
  • 30
    • 84859053464 scopus 로고    scopus 로고
    • Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast
    • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb Cell Fact. 2012;11(40):1475-2859.
    • (2012) Microb Cell Fact , vol.11 , Issue.40 , pp. 1475-2859
    • Sasano, Y.1    Haitani, Y.2    Hashida, K.3    Ohtsu, I.4    Shima, J.5    Takagi, H.6
  • 31
    • 84857127683 scopus 로고    scopus 로고
    • Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough
    • 1:CAS:528:DC%2BC3MXhsFKjsLbE
    • Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol. 2012;152(1-2):40-3.
    • (2012) Int J Food Microbiol , vol.152 , Issue.1-2 , pp. 40-43
    • Sasano, Y.1    Haitani, Y.2    Ohtsu, I.3    Shima, J.4    Takagi, H.5
  • 32
    • 29144482938 scopus 로고    scopus 로고
    • Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2MXhtlehtbjI
    • Takagi H, Takaoka M, Kawaguchi A, Kubo Y. Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol. 2005;71(12):8656-62.
    • (2005) Appl Environ Microbiol , vol.71 , Issue.12 , pp. 8656-8662
    • Takagi, H.1    Takaoka, M.2    Kawaguchi, A.3    Kubo, Y.4
  • 33
    • 55649090079 scopus 로고    scopus 로고
    • Proline as a stress protectant in yeast: Physiological functions, metabolic regulations, and biotechnological applications
    • 1:CAS:528:DC%2BD1cXhtlaqsbnI
    • Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol. 2008;81(2):211-23.
    • (2008) Appl Microbiol Biotechnol , vol.81 , Issue.2 , pp. 211-223
    • Takagi, H.1
  • 35
    • 0034807841 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid
    • 1:CAS:528:DC%2BD3MXnt1CgsrY%3D
    • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 2001;147:2409-15.
    • (2001) Microbiology , vol.147 , pp. 2409-2415
    • Ludovico, P.1    Sousa, M.J.2    Silva, M.T.3    Leao, C.4    Corte-Real, M.5
  • 37
    • 14744274093 scopus 로고    scopus 로고
    • Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii
    • 1:CAS:528:DC%2BD2MXitl2lu7Y%3D
    • Chen CB, Dickman MB. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA. 2005;102(9):3459-64.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.9 , pp. 3459-3464
    • Chen, C.B.1    Dickman, M.B.2
  • 38
    • 77954818764 scopus 로고    scopus 로고
    • Inositol phosphate synthesis and the nuclear processes they affect
    • 1:CAS:528:DC%2BC3cXntVynsr8%3D
    • Monserrate JP, York JD. Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol. 2010;22(3):365-73.
    • (2010) Curr Opin Cell Biol , vol.22 , Issue.3 , pp. 365-373
    • Monserrate, J.P.1    York, J.D.2
  • 39
    • 79959457450 scopus 로고    scopus 로고
    • Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3MXptVCntr8%3D
    • Carman GM, Han GS. Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem. 2011;80:859-83.
    • (2011) Annu Rev Biochem , vol.80 , pp. 859-883
    • Carman, G.M.1    Han, G.S.2
  • 40
    • 84879771518 scopus 로고    scopus 로고
    • Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXhtFGqsr3O
    • Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One. 2013;8(7):e68317.
    • (2013) PLoS One. , vol.8 , Issue.7 , pp. e68317
    • Zha, J.1    Li, B.Z.2    Shen, M.H.3    Hu, M.L.4    Song, H.5    Yuan, Y.J.6
  • 41
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • 1:CAS:528:DyaK2MXksl2nsLo%3D
    • Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11(4):355-60.
    • (1995) Yeast , vol.11 , Issue.4 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 42
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng HC, Long FH, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226-38.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 43
    • 84864479791 scopus 로고    scopus 로고
    • MetaboAnalyst 2.0 - A comprehensive server for metabolomic data analysis
    • 1:CAS:528:DC%2BC3sXjtVCqu7w%3D
    • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0 - a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40:W127-33.
    • (2012) Nucleic Acids Res , vol.40 , pp. W127-W133
    • Xia, J.1    Mandal, R.2    Sinelnikov, I.V.3    Broadhurst, D.4    Wishart, D.S.5
  • 44
    • 77956550520 scopus 로고    scopus 로고
    • MetPA: A web-based metabolomics tool for pathway analysis and visualization
    • 1:CAS:528:DC%2BC3cXhtFGhu77I
    • Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010;26(18):2342-4.
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. 2342-2344
    • Xia, J.1    Wishart, D.S.2
  • 45
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • 1:CAS:528:DyaL1MXktVais70%3D
    • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122(1):19-27.
    • (1989) Genetics , vol.122 , Issue.1 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.