메뉴 건너뛰기




Volumn 9, Issue 3, 2015, Pages 325-339

Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers

Author keywords

Artificial Neural Network; Clustering; Ensemble modeling; Nakdong River; Water quality forecasting

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; FORECASTING; RIVERS; WATER QUALITY;

EID: 84940899906     PISSN: 15706443     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jher.2014.09.006     Document Type: Article
Times cited : (79)

References (26)
  • 2
    • 80052021232 scopus 로고    scopus 로고
    • Application of artificial neural network ensembles in probabilistic hydrological forecasting
    • Araghinejad S., Azmi M., Kholghi M. Application of artificial neural network ensembles in probabilistic hydrological forecasting. J. Hydrol. 2011, 407(1-4):94-104.
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 94-104
    • Araghinejad, S.1    Azmi, M.2    Kholghi, M.3
  • 3
    • 0033272085 scopus 로고    scopus 로고
    • The effect of misclassification costs on neural network classifier
    • Berardi V.L., Zhang G.P. The effect of misclassification costs on neural network classifier. Decis. Sci. 1999, 30(3):659-683.
    • (1999) Decis. Sci. , vol.30 , Issue.3 , pp. 659-683
    • Berardi, V.L.1    Zhang, G.P.2
  • 4
    • 68949135430 scopus 로고    scopus 로고
    • Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
    • Boucher M.A., Perreault L., Anctil F. Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. J. Hydroinform. 2009, 11(3-4):297-307.
    • (2009) J. Hydroinform. , vol.11 , Issue.3-4 , pp. 297-307
    • Boucher, M.A.1    Perreault, L.2    Anctil, F.3
  • 5
    • 84861091034 scopus 로고    scopus 로고
    • Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction
    • Chang Y.-T., Lin J., Shieh J.-S., Abbod M.F. Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction. Adv. Fuzzy Syst 2012, 9.
    • (2012) Adv. Fuzzy Syst , pp. 9
    • Chang, Y.-T.1    Lin, J.2    Shieh, J.-S.3    Abbod, M.F.4
  • 6
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2:267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.1
  • 8
    • 0348096294 scopus 로고    scopus 로고
    • Clustering validity checking methods: part II
    • Halkidi M., Batistakis Y., Vazirgiannis M. Clustering validity checking methods: part II. Sigmod Rec. 2002, 31(3):19-27.
    • (2002) Sigmod Rec. , vol.31 , Issue.3 , pp. 19-27
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 12
    • 84881236620 scopus 로고    scopus 로고
    • Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations
    • Kasiviswanathan K.S., Cibin R., Sudheer K.P., Chaubey I. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J. Hydrol. 2013, 499:275-288.
    • (2013) J. Hydrol. , vol.499 , pp. 275-288
    • Kasiviswanathan, K.S.1    Cibin, R.2    Sudheer, K.P.3    Chaubey, I.4
  • 13
    • 79960418874 scopus 로고    scopus 로고
    • Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis
    • Khalil B., Ouarda T.B.M.J., St-Hilaire A. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol. 2011, 405:277-287.
    • (2011) J. Hydrol. , vol.405 , pp. 277-287
    • Khalil, B.1    Ouarda, T.B.M.J.2    St-Hilaire, A.3
  • 15
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • Krogh A., Vedelsby J. Neural network ensembles, cross validation and active learning. Adv. Neural Inf. Process. Syst. 1995, 7:231-238.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 16
    • 34247134996 scopus 로고    scopus 로고
    • Ensemble modeling approach for rainfall/groundwater balancing
    • Laucelli D., Babovic V., Keijzer M., Giustolisi O. Ensemble modeling approach for rainfall/groundwater balancing. J. Hydroinform. 2007, 9(2):95-106.
    • (2007) J. Hydroinform. , vol.9 , Issue.2 , pp. 95-106
    • Laucelli, D.1    Babovic, V.2    Keijzer, M.3    Giustolisi, O.4
  • 18
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25(8):891-909.
    • (2010) Environ. Model. Softw. , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 19
    • 84888138641 scopus 로고    scopus 로고
    • Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentration
    • Mulia I.E., Tay H., Roopsekhar K., Tkalich P. Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentration. J. Hydro-environ. Res. 2013, 7:279-299.
    • (2013) J. Hydro-environ. Res. , vol.7 , pp. 279-299
    • Mulia, I.E.1    Tay, H.2    Roopsekhar, K.3    Tkalich, P.4
  • 22
    • 59449101087 scopus 로고    scopus 로고
    • A genetic algorithm-based artificial neural network model for the optimization of machining processes
    • Venkatesan D., Kannan K., Saravanan R. A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput. Appl. 2009, 18(2):135-140.
    • (2009) Neural Comput. Appl. , vol.18 , Issue.2 , pp. 135-140
    • Venkatesan, D.1    Kannan, K.2    Saravanan, R.3
  • 23
    • 0003130942 scopus 로고
    • Determining initial weights of feedforward neural networks based on least-squares method
    • Yam Y.F., Chow T.W.S. Determining initial weights of feedforward neural networks based on least-squares method. Neural Process. Lett. 1995, 2(2):13-17.
    • (1995) Neural Process. Lett. , vol.2 , Issue.2 , pp. 13-17
    • Yam, Y.F.1    Chow, T.W.S.2
  • 24
    • 34547507567 scopus 로고    scopus 로고
    • A data reduction approach for resolving the imbalanced data issue in functional genomics
    • Yoon K., Kwek S. A data reduction approach for resolving the imbalanced data issue in functional genomics. Neural Comput. Appl. 2007, 16:295-306.
    • (2007) Neural Comput. Appl. , vol.16 , pp. 295-306
    • Yoon, K.1    Kwek, S.2
  • 25
    • 64349097098 scopus 로고    scopus 로고
    • Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods
    • Zamani A., Azimian A., Heemink A., Solomatine D. Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods. J. Hydroinform. 2009, 11(2):154-164.
    • (2009) J. Hydroinform. , vol.11 , Issue.2 , pp. 154-164
    • Zamani, A.1    Azimian, A.2    Heemink, A.3    Solomatine, D.4
  • 26
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z., Liu X. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 16(1):63-77.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.1 , pp. 63-77
    • Zhou, Z.1    Liu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.