-
1
-
-
38049120179
-
Improving the performance of the RBF neural networks trained with imbalanced samples
-
Alejo R., Garcia V., Sotoca J.M., Mollineda R.A., Senchez J.S. Improving the performance of the RBF neural networks trained with imbalanced samples. Lect. Notes Comput. Sci. 2007, 4507:162-169.
-
(2007)
Lect. Notes Comput. Sci.
, vol.4507
, pp. 162-169
-
-
Alejo, R.1
Garcia, V.2
Sotoca, J.M.3
Mollineda, R.A.4
Senchez, J.S.5
-
2
-
-
80052021232
-
Application of artificial neural network ensembles in probabilistic hydrological forecasting
-
Araghinejad S., Azmi M., Kholghi M. Application of artificial neural network ensembles in probabilistic hydrological forecasting. J. Hydrol. 2011, 407(1-4):94-104.
-
(2011)
J. Hydrol.
, vol.407
, Issue.1-4
, pp. 94-104
-
-
Araghinejad, S.1
Azmi, M.2
Kholghi, M.3
-
3
-
-
0033272085
-
The effect of misclassification costs on neural network classifier
-
Berardi V.L., Zhang G.P. The effect of misclassification costs on neural network classifier. Decis. Sci. 1999, 30(3):659-683.
-
(1999)
Decis. Sci.
, vol.30
, Issue.3
, pp. 659-683
-
-
Berardi, V.L.1
Zhang, G.P.2
-
4
-
-
68949135430
-
Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
-
Boucher M.A., Perreault L., Anctil F. Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. J. Hydroinform. 2009, 11(3-4):297-307.
-
(2009)
J. Hydroinform.
, vol.11
, Issue.3-4
, pp. 297-307
-
-
Boucher, M.A.1
Perreault, L.2
Anctil, F.3
-
5
-
-
84861091034
-
Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction
-
Chang Y.-T., Lin J., Shieh J.-S., Abbod M.F. Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction. Adv. Fuzzy Syst 2012, 9.
-
(2012)
Adv. Fuzzy Syst
, pp. 9
-
-
Chang, Y.-T.1
Lin, J.2
Shieh, J.-S.3
Abbod, M.F.4
-
6
-
-
84974743850
-
Fuzzy model identification based on cluster estimation
-
Chiu S. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2:267-278.
-
(1994)
J. Intell. Fuzzy Syst.
, vol.2
, pp. 267-278
-
-
Chiu, S.1
-
12
-
-
84881236620
-
Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations
-
Kasiviswanathan K.S., Cibin R., Sudheer K.P., Chaubey I. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J. Hydrol. 2013, 499:275-288.
-
(2013)
J. Hydrol.
, vol.499
, pp. 275-288
-
-
Kasiviswanathan, K.S.1
Cibin, R.2
Sudheer, K.P.3
Chaubey, I.4
-
13
-
-
79960418874
-
Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis
-
Khalil B., Ouarda T.B.M.J., St-Hilaire A. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol. 2011, 405:277-287.
-
(2011)
J. Hydrol.
, vol.405
, pp. 277-287
-
-
Khalil, B.1
Ouarda, T.B.M.J.2
St-Hilaire, A.3
-
15
-
-
85054435084
-
Neural network ensembles, cross validation and active learning
-
Krogh A., Vedelsby J. Neural network ensembles, cross validation and active learning. Adv. Neural Inf. Process. Syst. 1995, 7:231-238.
-
(1995)
Adv. Neural Inf. Process. Syst.
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
16
-
-
34247134996
-
Ensemble modeling approach for rainfall/groundwater balancing
-
Laucelli D., Babovic V., Keijzer M., Giustolisi O. Ensemble modeling approach for rainfall/groundwater balancing. J. Hydroinform. 2007, 9(2):95-106.
-
(2007)
J. Hydroinform.
, vol.9
, Issue.2
, pp. 95-106
-
-
Laucelli, D.1
Babovic, V.2
Keijzer, M.3
Giustolisi, O.4
-
18
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25(8):891-909.
-
(2010)
Environ. Model. Softw.
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
19
-
-
84888138641
-
Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentration
-
Mulia I.E., Tay H., Roopsekhar K., Tkalich P. Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentration. J. Hydro-environ. Res. 2013, 7:279-299.
-
(2013)
J. Hydro-environ. Res.
, vol.7
, pp. 279-299
-
-
Mulia, I.E.1
Tay, H.2
Roopsekhar, K.3
Tkalich, P.4
-
21
-
-
77957960090
-
A supervised learning approach for imbalanced data sets
-
Nguyen G., Bouzerdoum A., Phung S.L. A supervised learning approach for imbalanced data sets. Proceedings of International Conference on Pattern Recognition Held in Tempa, Florida, USA During December 8-11, 2008 2008, 1-4.
-
(2008)
Proceedings of International Conference on Pattern Recognition Held in Tempa, Florida, USA During December 8-11, 2008
, pp. 1-4
-
-
Nguyen, G.1
Bouzerdoum, A.2
Phung, S.L.3
-
22
-
-
59449101087
-
A genetic algorithm-based artificial neural network model for the optimization of machining processes
-
Venkatesan D., Kannan K., Saravanan R. A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput. Appl. 2009, 18(2):135-140.
-
(2009)
Neural Comput. Appl.
, vol.18
, Issue.2
, pp. 135-140
-
-
Venkatesan, D.1
Kannan, K.2
Saravanan, R.3
-
23
-
-
0003130942
-
Determining initial weights of feedforward neural networks based on least-squares method
-
Yam Y.F., Chow T.W.S. Determining initial weights of feedforward neural networks based on least-squares method. Neural Process. Lett. 1995, 2(2):13-17.
-
(1995)
Neural Process. Lett.
, vol.2
, Issue.2
, pp. 13-17
-
-
Yam, Y.F.1
Chow, T.W.S.2
-
24
-
-
34547507567
-
A data reduction approach for resolving the imbalanced data issue in functional genomics
-
Yoon K., Kwek S. A data reduction approach for resolving the imbalanced data issue in functional genomics. Neural Comput. Appl. 2007, 16:295-306.
-
(2007)
Neural Comput. Appl.
, vol.16
, pp. 295-306
-
-
Yoon, K.1
Kwek, S.2
-
25
-
-
64349097098
-
Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods
-
Zamani A., Azimian A., Heemink A., Solomatine D. Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods. J. Hydroinform. 2009, 11(2):154-164.
-
(2009)
J. Hydroinform.
, vol.11
, Issue.2
, pp. 154-164
-
-
Zamani, A.1
Azimian, A.2
Heemink, A.3
Solomatine, D.4
-
26
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Zhou Z., Liu X. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 16(1):63-77.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.16
, Issue.1
, pp. 63-77
-
-
Zhou, Z.1
Liu, X.2
|