-
3
-
-
27144540575
-
Class imbalances versus small disjuncts
-
1
-
Jo T, Japkowicz N (2004) Class imbalances versus small disjuncts. ACM SIGKDD Explorat 6(1):40-49
-
(2004)
ACM SIGKDD Explorat
, vol.6
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
6
-
-
0027652495
-
Exploring the decision forest: An empirical investigation of Occam's razor in decision tree induction
-
Murphy PM, Pazzani MJ (1994) Exploring the decision forest: an empirical investigation of Occam's razor in decision tree induction. J Artif Intell Res 1:257-275
-
(1994)
J Artif Intell Res
, vol.1
, pp. 257-275
-
-
Murphy, P.M.1
Pazzani, M.J.2
-
8
-
-
85129013928
-
MDL-based decision tree pruning
-
Menlo Park, CA. AAAI Press
-
Mehta M, Rissanen J, Agrawal R (1995) MDL-based decision tree pruning. In: Proceedings of the first international conference on knowledge discovery and data mining, Menlo Park, CA. AAAI Press, pp 216-221
-
(1995)
Proceedings of the First International Conference on Knowledge Discovery and Data Mining
, pp. 216-221
-
-
Mehta, M.1
Rissanen, J.2
Agrawal, R.3
-
11
-
-
33644963516
-
Mixture of expert agents for handling imbalanced data sets
-
1
-
Kotsiantis SB, Pintelas PE (2003) Mixture of expert agents for handling imbalanced data sets. Ann Math Comput Teleinform 1(1):46-55
-
(2003)
Ann Math Comput Teleinform
, vol.1
, pp. 46-55
-
-
Kotsiantis, S.B.1
Pintelas, P.E.2
-
12
-
-
11244278806
-
Asymmetric missing-data problems: Overcoming the lack of negative data in preference ranking
-
Kolcz A, Alspector J (2002) Asymmetric missing-data problems: overcoming the lack of negative data in preference ranking. Informat Retr 5(1):5-40
-
(2002)
Informat Retr
, vol.5
, Issue.1
, pp. 5-40
-
-
Kolcz, A.1
Alspector, J.2
-
20
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling method for learning from imbalanced data sets. Comput Intell 20(1)
-
(2004)
Comput Intell
, vol.20
, Issue.1
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
21
-
-
34547535389
-
Sampling approaches to learning from imbalanced datasets: Active learning, cost sensitive learning and beyond
-
Abe N (2003) Sampling approaches to learning from imbalanced datasets: active learning, cost sensitive learning and beyond. In: ICML-KDD'2003 workshop: learning from imbalanced data sets
-
(2003)
ICML-KDD'2003 Workshop: Learning from Imbalanced Data Sets
-
-
Abe, N.1
-
23
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F, Fawcett T (2001) Robust classification for imprecise environments. Mach Learn 42/3:203-231
-
(2001)
Mach Learn
, vol.423
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
|