메뉴 건너뛰기




Volumn 2015-May, Issue , 2015, Pages 195-206

Comprehensive and reliable crowd assessment algorithms

Author keywords

[No Author keywords available]

Indexed keywords

CONFIDENCE INTERVAL; ERROR RATE; REAL-WORLD DATASETS;

EID: 84940851758     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2015.7113284     Document Type: Conference Paper
Times cited : (46)

References (31)
  • 5
  • 8
    • 85162363474 scopus 로고    scopus 로고
    • Crowdclustering
    • R. Gomes et al., "Crowdclustering," in NIPS, 2011.
    • (2011) NIPS
    • Gomes, R.1
  • 9
  • 13
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm
    • A. P. Dawid and A. M. Skene, "Maximum likelihood estimation of observer error-rates using the em algorithm," Applied Statistics, vol. 28, 1979.
    • (1979) Applied Statistics , vol.28
    • Dawid, A.P.1    Skene, A.M.2
  • 18
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • J. Whitehill et al., "Whose vote should count more: Optimal integration of labels from labelers of unknown expertise," in NIPS, 2009.
    • (2009) NIPS
    • Whitehill, J.1
  • 19
    • 71149084080 scopus 로고    scopus 로고
    • Supervised learning from multiple experts: Whom to trust when everyone lies a bit
    • V. Raykar et al., "Supervised learning from multiple experts: whom to trust when everyone lies a bit," in ICML, 2009.
    • (2009) ICML
    • Raykar, V.1
  • 20
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • V. C. Raykar and S. Yu, "Eliminating spammers and ranking annotators for crowdsourced labeling tasks," Journal of Machine Learning Research, vol. 13, 2012.
    • (2012) Journal of Machine Learning Research , vol.13
    • Raykar, V.C.1    Yu, S.2
  • 21
    • 77956536129 scopus 로고    scopus 로고
    • Online crowdsourcing: Rating annotators and obtaining cost-effective labels
    • P. Welinder and P. Perona, "Online crowdsourcing: rating annotators and obtaining cost-effective labels," in CVPR, 2010.
    • (2010) CVPR
    • Welinder, P.1    Perona, P.2
  • 24
    • 84877752474 scopus 로고    scopus 로고
    • Variational inference for crowdsourcing
    • Q. Liu, J. Peng, and A. Ihler, "Variational inference for crowdsourcing," in NIPS, 2012.
    • (2012) NIPS
    • Liu, Q.1    Peng, J.2    Ihler, A.3
  • 25
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? Improving data quality and data mining using multiple, noisy labelers
    • V. S. Sheng, F. Provost, and P. Ipeirotis, "Get another label? improving data quality and data mining using multiple, noisy labelers," in SIGKDD, 2008.
    • (2008) SIGKDD
    • Sheng, V.S.1    Provost, F.2    Ipeirotis, P.3
  • 26
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling
    • P. Donmez et al., "Efficiently learning the accuracy of labeling sources for selective sampling," in KDD, 2009.
    • (2009) KDD
    • Donmez, P.1
  • 28
    • 79959638956 scopus 로고    scopus 로고
    • Who moderates the moderators? Crowdsourcing abuse detection in user-generated content
    • A. Ghosh, S. Kale, and P. McAfee, "Who moderates the moderators? crowdsourcing abuse detection in user-generated content," in EC, 2011.
    • (2011) EC
    • Ghosh, A.1    Kale, S.2    McAfee, P.3
  • 29
    • 84901191481 scopus 로고    scopus 로고
    • Effcient crowdsourcing for multi-class labeling
    • D. Karger, S. Oh, and D. Shah, "Effcient crowdsourcing for multi-class labeling," in SIGMETRICS, 2013.
    • (2013) SIGMETRICS
    • Karger, D.1    Oh, S.2    Shah, D.3
  • 30
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast-but is it good: Evaluating non-expert annotations for natural language tasks
    • R. Snow et al., "Cheap and fast-but is it good: evaluating non-expert annotations for natural language tasks," in EMNLP, 2008.
    • (2008) EMNLP
    • Snow, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.