-
4
-
-
84862645517
-
Crowdscreen: Algorithms for filtering data with humans
-
A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and J. Widom, "Crowdscreen: Algorithms for filtering data with humans," in SIGMOD, 2012.
-
(2012)
SIGMOD
-
-
Parameswaran, A.1
Garcia-Molina, H.2
Park, H.3
Polyzotis, N.4
Ramesh, A.5
Widom, J.6
-
6
-
-
84871049467
-
Humanpowered sorts and joins
-
A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller., "Humanpowered sorts and joins," in VLDB, 2012.
-
(2012)
VLDB
-
-
Marcus, A.1
Wu, E.2
Karger, D.3
Madden, S.4
Miller, R.5
-
7
-
-
84866038653
-
Active sampling for entity matching
-
K. Bellare, S. Iyengar, A. Parameswaran, and V. Rastogi, "Active sampling for entity matching," in KDD, 2012.
-
(2012)
KDD
-
-
Bellare, K.1
Iyengar, S.2
Parameswaran, A.3
Rastogi, V.4
-
8
-
-
85162363474
-
Crowdclustering
-
R. Gomes et al., "Crowdclustering," in NIPS, 2011.
-
(2011)
NIPS
-
-
Gomes, R.1
-
9
-
-
84872946975
-
Crowder: Crowdsourcing entity resolution
-
J. Wang, T. Kraska, M. Franklin, and J. Feng, "Crowder: Crowdsourcing entity resolution," in VLDB, 2012.
-
(2012)
VLDB
-
-
Wang, J.1
Kraska, T.2
Franklin, M.3
Feng, J.4
-
10
-
-
79960245747
-
Human-assisted graph search: It's okay to ask questions
-
A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom, "Human-assisted graph search: it's okay to ask questions," in VLDB, 2011.
-
(2011)
VLDB
-
-
Parameswaran, A.1
Sarma, A.D.2
Garcia-Molina, H.3
Polyzotis, N.4
Widom, J.5
-
13
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
A. P. Dawid and A. M. Skene, "Maximum likelihood estimation of observer error-rates using the em algorithm," Applied Statistics, vol. 28, 1979.
-
(1979)
Applied Statistics
, vol.28
-
-
Dawid, A.P.1
Skene, A.M.2
-
14
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the em algorithm," JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 1977.
-
(1977)
JOURNAL of the ROYAL STATISTICAL SOCIETY, SERIES B
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
18
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
J. Whitehill et al., "Whose vote should count more: Optimal integration of labels from labelers of unknown expertise," in NIPS, 2009.
-
(2009)
NIPS
-
-
Whitehill, J.1
-
19
-
-
71149084080
-
Supervised learning from multiple experts: Whom to trust when everyone lies a bit
-
V. Raykar et al., "Supervised learning from multiple experts: whom to trust when everyone lies a bit," in ICML, 2009.
-
(2009)
ICML
-
-
Raykar, V.1
-
20
-
-
84857856268
-
Eliminating spammers and ranking annotators for crowdsourced labeling tasks
-
V. C. Raykar and S. Yu, "Eliminating spammers and ranking annotators for crowdsourced labeling tasks," Journal of Machine Learning Research, vol. 13, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
-
-
Raykar, V.C.1
Yu, S.2
-
21
-
-
77956536129
-
Online crowdsourcing: Rating annotators and obtaining cost-effective labels
-
P. Welinder and P. Perona, "Online crowdsourcing: rating annotators and obtaining cost-effective labels," in CVPR, 2010.
-
(2010)
CVPR
-
-
Welinder, P.1
Perona, P.2
-
22
-
-
84880549308
-
-
Stanford University, Infolab Technical Report
-
A. Ramesh, A. Parameswaran, H. Garcia-Molina, and N. Polyzotis, "Identifying reliable workers swiftly," Stanford University, Infolab Technical Report, 2012.
-
(2012)
Identifying Reliable Workers Swiftly
-
-
Ramesh, A.1
Parameswaran, A.2
Garcia-Molina, H.3
Polyzotis, N.4
-
23
-
-
84873191280
-
Cdas: A crowdsourcing data analytics system
-
X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang, "Cdas: a crowdsourcing data analytics system," Proc. VLDB Endow., vol. 5.
-
Proc. VLDB Endow.
, vol.5
-
-
Liu, X.1
Lu, M.2
Ooi, B.C.3
Shen, Y.4
Wu, S.5
Zhang, M.6
-
24
-
-
84877752474
-
Variational inference for crowdsourcing
-
Q. Liu, J. Peng, and A. Ihler, "Variational inference for crowdsourcing," in NIPS, 2012.
-
(2012)
NIPS
-
-
Liu, Q.1
Peng, J.2
Ihler, A.3
-
25
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
V. S. Sheng, F. Provost, and P. Ipeirotis, "Get another label? improving data quality and data mining using multiple, noisy labelers," in SIGKDD, 2008.
-
(2008)
SIGKDD
-
-
Sheng, V.S.1
Provost, F.2
Ipeirotis, P.3
-
26
-
-
70350681833
-
Efficiently learning the accuracy of labeling sources for selective sampling
-
P. Donmez et al., "Efficiently learning the accuracy of labeling sources for selective sampling," in KDD, 2009.
-
(2009)
KDD
-
-
Donmez, P.1
-
27
-
-
84893096721
-
Aggregating crowdsourced binary ratings
-
N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi, "Aggregating crowdsourced binary ratings," in WWW, 2013.
-
(2013)
WWW
-
-
Dalvi, N.1
Dasgupta, A.2
Kumar, R.3
Rastogi, V.4
-
28
-
-
79959638956
-
Who moderates the moderators? Crowdsourcing abuse detection in user-generated content
-
A. Ghosh, S. Kale, and P. McAfee, "Who moderates the moderators? crowdsourcing abuse detection in user-generated content," in EC, 2011.
-
(2011)
EC
-
-
Ghosh, A.1
Kale, S.2
McAfee, P.3
-
29
-
-
84901191481
-
Effcient crowdsourcing for multi-class labeling
-
D. Karger, S. Oh, and D. Shah, "Effcient crowdsourcing for multi-class labeling," in SIGMETRICS, 2013.
-
(2013)
SIGMETRICS
-
-
Karger, D.1
Oh, S.2
Shah, D.3
-
30
-
-
80053360508
-
Cheap and fast-but is it good: Evaluating non-expert annotations for natural language tasks
-
R. Snow et al., "Cheap and fast-but is it good: evaluating non-expert annotations for natural language tasks," in EMNLP, 2008.
-
(2008)
EMNLP
-
-
Snow, R.1
|