메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 686-694

Evaluating the crowd with confidence

Author keywords

Confidence; Crowdsourcing

Indexed keywords

CROWDSOURCING; DATA MINING;

EID: 84906822235     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487595     Document Type: Conference Paper
Times cited : (74)

References (35)
  • 1
    • 85025669559 scopus 로고    scopus 로고
    • Mechanical Turk
    • Mechanical Turk. http://mturk.com.
  • 2
    • 65249129950 scopus 로고    scopus 로고
    • Crowdsourcing for relevance evaluation
    • Omar Alonso, Daniel E. Rose, and Benjamin Stewart. Crowdsourcing for relevance evaluation. SIGIR Forum, 42, 2008.
    • (2008) SIGIR Forum , vol.42
    • Alonso, O.1    Rose, D.E.2    Stewart, B.3
  • 5
    • 84873692208 scopus 로고    scopus 로고
    • Reflections on stanford's moocs
    • Steve Cooper and Mehran Sahami. Reflections on stanford's moocs. Communications of the ACM, 56(2):28-30, 2013.
    • (2013) Communications of the ACM , vol.56 , Issue.2 , pp. 28-30
    • Cooper, S.1    Sahami, M.2
  • 6
    • 85025693648 scopus 로고    scopus 로고
    • Image Comparison Dataset
    • Image Comparison Dataset. http://www.stanford.edu/-manasrj/ic-data.tar.gz.
  • 7
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm
    • A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied Statistics, 28(1):20-28, 1979.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 9
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • J. Whitehill et al. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS. 2009.
    • (2009) NIPS
    • Whitehill, J.1
  • 10
    • 85076285223 scopus 로고    scopus 로고
    • Recaptchas : Understanding captcha-solving services in an economic context
    • M. Motoyama et al. Recaptchas : Understanding captcha-solving services in an economic context. In USENIX Security Symposium '10.
    • USENIX Security Symposium '10
    • Motoyama, M.1
  • 11
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling
    • P. Donmez et al. Efficiently learning the accuracy of labeling sources for selective sampling. In KDD, 2009.
    • (2009) KDD
    • Donmez, P.1
  • 12
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks
    • R. Snow et al. Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks. In EMNLP, 2008.
    • (2008) EMNLP
    • Snow, R.1
  • 13
    • 71149084080 scopus 로고    scopus 로고
    • Supervised learning from multiple experts: Whom to trust when everyone lies a bit
    • V. Raykar et al. Supervised learning from multiple experts: Whom to trust when everyone lies a bit. In ICML, 2009.
    • (2009) ICML
    • Raykar, V.1
  • 15
    • 79955056761 scopus 로고    scopus 로고
    • Theory and use of the em algorithm
    • March
    • Maya R. Gupta and Yihua Chen. Theory and use of the em algorithm. Found. Trends Signal Process., 4(3):223-296, March 2011.
    • (2011) Found. Trends Signal Process , vol.4 , Issue.3 , pp. 223-296
    • Gupta, M.R.1    Chen, Y.2
  • 18
    • 84873191280 scopus 로고    scopus 로고
    • Cdas: A crowdsourcing data analytics system
    • June
    • Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and Meihui Zhang. Cdas: A crowdsourcing data analytics system. Proc. VLDB Endow., 5(10):1040-1051, June 2012.
    • (2012) Proc. VLDB Endow. , vol.5 , Issue.10 , pp. 1040-1051
    • Liu, X.1    Lu, M.2    Ooi, B.C.3    Shen, Y.4    Wu, S.5    Zhang, M.6
  • 23
    • 85162363474 scopus 로고    scopus 로고
    • Crowdclustering
    • R. Gomes et al. Crowdclustering. In NIPS, 2011.
    • (2011) NIPS
    • Gomes, R.1
  • 25
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • Vikas C. Raykar and Shipeng Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. Journal of Machine Learning Research, 13:491-518, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 491-518
    • Raykar, V.C.1    Yu, S.2
  • 26
  • 28
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? Improving data quality and data mining using multiple, noisy labelers
    • V. S. Sheng, F. Provost, and P. Ipeirotis. Get another label? improving data quality and data mining using multiple, noisy labelers. In SIGKDD, pages 614-622, 2008.
    • (2008) SIGKDD , pp. 614-622
    • Sheng, V.S.1    Provost, F.2    Ipeirotis, P.3
  • 29
    • 84866010071 scopus 로고    scopus 로고
    • Learning from crowds in the presence of schools of thought
    • Yuandong Tian and Jun Zhu. Learning from crowds in the presence of schools of thought. In KDD, 2012.
    • (2012) KDD
    • Tian, Y.1    Zhu, J.2
  • 32
    • 10644295905 scopus 로고    scopus 로고
    • Larry Wasserman. Springer
    • Larry Wasserman. All of Statistics. Springer, 2003.
    • (2003) All of Statistics
  • 33
    • 77956536129 scopus 로고    scopus 로고
    • Online crowdsourcing: Rating annotators and obtaining cost-effective labels
    • P. Welinder and P. Perona. Online crowdsourcing: Rating annotators and obtaining cost-effective labels. In CVPR, 2010.
    • (2010) CVPR
    • Welinder, P.1    Perona, P.2
  • 34
    • 84946650481 scopus 로고
    • Probable inference, the law of succession, and statistical inference
    • Edwin B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22(158):209-212, 1927.
    • (1927) Journal of the American Statistical Association , vol.22 , Issue.158 , pp. 209-212
    • Wilson, E.B.1
  • 35
    • 80053248048 scopus 로고    scopus 로고
    • Feasibility of human-in-The-loop minimum error rate training
    • O. Zaidan and C. Callison-Burch. Feasibility of human-in-The-loop minimum error rate training. In EMNLP, 2009.
    • (2009) EMNLP
    • Zaidan, O.1    Callison-Burch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.