-
1
-
-
85025669559
-
-
Mechanical Turk
-
Mechanical Turk. http://mturk.com.
-
-
-
-
2
-
-
65249129950
-
Crowdsourcing for relevance evaluation
-
Omar Alonso, Daniel E. Rose, and Benjamin Stewart. Crowdsourcing for relevance evaluation. SIGIR Forum, 42, 2008.
-
(2008)
SIGIR Forum
, vol.42
-
-
Alonso, O.1
Rose, D.E.2
Stewart, B.3
-
5
-
-
84873692208
-
Reflections on stanford's moocs
-
Steve Cooper and Mehran Sahami. Reflections on stanford's moocs. Communications of the ACM, 56(2):28-30, 2013.
-
(2013)
Communications of the ACM
, vol.56
, Issue.2
, pp. 28-30
-
-
Cooper, S.1
Sahami, M.2
-
6
-
-
85025693648
-
-
Image Comparison Dataset
-
Image Comparison Dataset. http://www.stanford.edu/-manasrj/ic-data.tar.gz.
-
-
-
-
7
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied Statistics, 28(1):20-28, 1979.
-
(1979)
Applied Statistics
, vol.28
, Issue.1
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
J. Whitehill et al. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS. 2009.
-
(2009)
NIPS
-
-
Whitehill, J.1
-
10
-
-
85076285223
-
Recaptchas : Understanding captcha-solving services in an economic context
-
M. Motoyama et al. Recaptchas : Understanding captcha-solving services in an economic context. In USENIX Security Symposium '10.
-
USENIX Security Symposium '10
-
-
Motoyama, M.1
-
11
-
-
70350681833
-
Efficiently learning the accuracy of labeling sources for selective sampling
-
P. Donmez et al. Efficiently learning the accuracy of labeling sources for selective sampling. In KDD, 2009.
-
(2009)
KDD
-
-
Donmez, P.1
-
12
-
-
80053360508
-
Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks
-
R. Snow et al. Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks. In EMNLP, 2008.
-
(2008)
EMNLP
-
-
Snow, R.1
-
13
-
-
71149084080
-
Supervised learning from multiple experts: Whom to trust when everyone lies a bit
-
V. Raykar et al. Supervised learning from multiple experts: Whom to trust when everyone lies a bit. In ICML, 2009.
-
(2009)
ICML
-
-
Raykar, V.1
-
15
-
-
79955056761
-
Theory and use of the em algorithm
-
March
-
Maya R. Gupta and Yihua Chen. Theory and use of the em algorithm. Found. Trends Signal Process., 4(3):223-296, March 2011.
-
(2011)
Found. Trends Signal Process
, vol.4
, Issue.3
, pp. 223-296
-
-
Gupta, M.R.1
Chen, Y.2
-
18
-
-
84873191280
-
Cdas: A crowdsourcing data analytics system
-
June
-
Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and Meihui Zhang. Cdas: A crowdsourcing data analytics system. Proc. VLDB Endow., 5(10):1040-1051, June 2012.
-
(2012)
Proc. VLDB Endow.
, vol.5
, Issue.10
, pp. 1040-1051
-
-
Liu, X.1
Lu, M.2
Ooi, B.C.3
Shen, Y.4
Wu, S.5
Zhang, M.6
-
19
-
-
84871049467
-
Human-powered sorts and joins
-
A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts and joins. In VLDB, 2012.
-
(2012)
VLDB
-
-
Marcus, A.1
Wu, E.2
Karger, D.3
Madden, S.4
Miller, R.5
-
21
-
-
84862645517
-
Crowdscreen: Algorithms for filtering data with humans
-
A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and J. Widom. Crowdscreen: Algorithms for filtering data with humans. In SIGMOD, 2012.
-
(2012)
SIGMOD
-
-
Parameswaran, A.1
Garcia-Molina, H.2
Park, H.3
Polyzotis, N.4
Ramesh, A.5
Widom, J.6
-
22
-
-
79960245747
-
Human-Assisted graph search: It's okay to ask questions
-
A. Parameswaran, A. Das Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom. Human-Assisted graph search: it's okay to ask questions. In VLDB, 2011.
-
(2011)
VLDB
-
-
Parameswaran, A.1
Sarma, A.D.2
Garcia-Molina, H.3
Polyzotis, N.4
Widom, J.5
-
23
-
-
85162363474
-
Crowdclustering
-
R. Gomes et al. Crowdclustering. In NIPS, 2011.
-
(2011)
NIPS
-
-
Gomes, R.1
-
24
-
-
84880549308
-
-
Infolab technical report, Stanford University
-
A. Ramesh, A. Parameswaran, H. Garcia-Molina, and N. Polyzotis. Identifying reliable workers swiftly. Infolab technical report, Stanford University, 2012.
-
(2012)
Identifying Reliable Workers Swiftly
-
-
Ramesh, A.1
Parameswaran, A.2
Garcia-Molina, H.3
Polyzotis, N.4
-
25
-
-
84857856268
-
Eliminating spammers and ranking annotators for crowdsourced labeling tasks
-
Vikas C. Raykar and Shipeng Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. Journal of Machine Learning Research, 13:491-518, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 491-518
-
-
Raykar, V.C.1
Yu, S.2
-
28
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
V. S. Sheng, F. Provost, and P. Ipeirotis. Get another label? improving data quality and data mining using multiple, noisy labelers. In SIGKDD, pages 614-622, 2008.
-
(2008)
SIGKDD
, pp. 614-622
-
-
Sheng, V.S.1
Provost, F.2
Ipeirotis, P.3
-
29
-
-
84866010071
-
Learning from crowds in the presence of schools of thought
-
Yuandong Tian and Jun Zhu. Learning from crowds in the presence of schools of thought. In KDD, 2012.
-
(2012)
KDD
-
-
Tian, Y.1
Zhu, J.2
-
32
-
-
10644295905
-
-
Larry Wasserman. Springer
-
Larry Wasserman. All of Statistics. Springer, 2003.
-
(2003)
All of Statistics
-
-
-
33
-
-
77956536129
-
Online crowdsourcing: Rating annotators and obtaining cost-effective labels
-
P. Welinder and P. Perona. Online crowdsourcing: Rating annotators and obtaining cost-effective labels. In CVPR, 2010.
-
(2010)
CVPR
-
-
Welinder, P.1
Perona, P.2
-
34
-
-
84946650481
-
Probable inference, the law of succession, and statistical inference
-
Edwin B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22(158):209-212, 1927.
-
(1927)
Journal of the American Statistical Association
, vol.22
, Issue.158
, pp. 209-212
-
-
Wilson, E.B.1
-
35
-
-
80053248048
-
Feasibility of human-in-The-loop minimum error rate training
-
O. Zaidan and C. Callison-Burch. Feasibility of human-in-The-loop minimum error rate training. In EMNLP, 2009.
-
(2009)
EMNLP
-
-
Zaidan, O.1
Callison-Burch, C.2
|