메뉴 건너뛰기




Volumn , Issue , 2013, Pages 285-294

Aggregating crowdsourced binary ratings

Author keywords

Crowdsourcing; Mechanical turk; Spectral methods

Indexed keywords

ERROR ANALYSIS; WORLD WIDE WEB;

EID: 84893096721     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2488388.2488414     Document Type: Conference Paper
Times cited : (202)

References (19)
  • 2
    • 84979715754 scopus 로고    scopus 로고
    • A hierarchical Bayesian model of crowdsourced relevance coding
    • B. Carpenter. A hierarchical Bayesian model of crowdsourced relevance coding. In Prof. 12th TREC, 2011.
    • (2011) Prof. 12th TREC
    • Carpenter, B.1
  • 3
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm
    • A. Dawid and A. Skene. Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics, pages 20-28, 1979.
    • (1979) Applied Statistics , pp. 20-28
    • Dawid, A.1    Skene, A.2
  • 4
    • 84867409394 scopus 로고    scopus 로고
    • Vox populi: Collecting high-quality labels from a crowd
    • O. Dekel and O. Shamir. Vox populi: Collecting high-quality labels from a crowd. In Proc. 22nd COLT, 2009.
    • (2009) Proc. 22nd COLT
    • Dekel, O.1    Shamir, O.2
  • 5
    • 79959638956 scopus 로고    scopus 로고
    • Who moderates the moderators?: Crowdsourcing abuse detection in user-generated content
    • A. Ghosh, S. Kale, and R. P. McAfee. Who moderates the moderators?: Crowdsourcing abuse detection in user-generated content. In Proc. 12th EC, pages 167-176, 2011.
    • (2011) Proc. 12th EC , pp. 167-176
    • Ghosh, A.1    Kale, S.2    McAfee, R.P.3
  • 6
    • 84860868169 scopus 로고    scopus 로고
    • Crowdsourcing with endogenous entry
    • A. Ghosh and R. P. McAfee. Crowdsourcing with endogenous entry. In Proc. 21st WWW, pages 999-1008, 2012.
    • (2012) Proc. 21st WWW , pp. 999-1008
    • Ghosh, A.1    McAfee, R.P.2
  • 7
    • 84856269683 scopus 로고    scopus 로고
    • Low-rank matrix approximation with weights or missing data is NP-hard
    • N. Gillis and F. Glineur. Low-rank matrix approximation with weights or missing data is NP-hard. SIAM J. Matrix Analysis Applications, 32(4):1149-1165, 2011.
    • (2011) SIAM J. Matrix Analysis Applications , vol.32 , Issue.4 , pp. 1149-1165
    • Gillis, N.1    Glineur, F.2
  • 9
    • 84906997869 scopus 로고    scopus 로고
    • Incentives for truthful reporting in crowdsourcing
    • E. Kamar and E. Horvitz. Incentives for truthful reporting in crowdsourcing. In AAMAS, pages 1329-1330, 2012.
    • (2012) AAMAS , pp. 1329-1330
    • Kamar, E.1    Horvitz, E.2
  • 10
    • 85162483531 scopus 로고    scopus 로고
    • Iterative learning for reliable crowdsourcing systems
    • D. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing systems. In Proc. 25th NIPS, pages 1953-1961, 2011.
    • (2011) Proc. 25th NIPS , pp. 1953-1961
    • Karger, D.1    Oh, S.2    Shah, D.3
  • 11
    • 84877752474 scopus 로고    scopus 로고
    • Variational inference for crowdsourcing
    • Q. Liu, J. Peng, and A. Ihler. Variational inference for crowdsourcing. In Proc. 26th NIPS, 2012.
    • (2012) Proc. 26th NIPS
    • Liu, Q.1    Peng, J.2    Ihler, A.3
  • 13
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • V. C. Raykar and S. Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. JMLR, 13:491-518, 2012.
    • (2012) JMLR , vol.13 , pp. 491-518
    • Raykar, V.C.1    Yu, S.2
  • 15
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? Improving data quality and data mining using multiple, noisy labelers
    • V. Sheng, F. Provost, and P. Ipeirotis. Get another label? Improving data quality and data mining using multiple, noisy labelers. In Proc. 14th KDD, pages 614-622, 2008.
    • (2008) Proc. 14th KDD , pp. 614-622
    • Sheng, V.1    Provost, F.2    Ipeirotis, P.3
  • 16
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast-but is it good? Evaluating non-expert annotations for natural language tasks
    • R. Snow, B. O'Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast-but is it good? Evaluating non-expert annotations for natural language tasks. In EMNLP, pages 254-263, 2008.
    • (2008) EMNLP , pp. 254-263
    • Snow, R.1    O'connor, B.2    Jurafsky, D.3    Ng, A.Y.4
  • 17
    • 84864315555 scopus 로고    scopus 로고
    • User-friendly tail bounds for sums of random matrices
    • J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12:389-434, 2012.
    • (2012) Found. Comput. Math. , vol.12 , pp. 389-434
    • Tropp, J.A.1
  • 19
    • 84877729010 scopus 로고    scopus 로고
    • Learning from the wisdom of crowds by minimax entropy
    • D. Zhou, J. Platt, S. Basu, and Y. Mao. Learning from the wisdom of crowds by minimax entropy. In Proc. 26th NIPS, pages 2204-2212, 2012.
    • (2012) Proc. 26th NIPS , pp. 2204-2212
    • Zhou, D.1    Platt, J.2    Basu, S.3    Mao, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.