메뉴 건너뛰기




Volumn 106, Issue , 2015, Pages 177-185

Extracellular electron transfer in yeast-based biofuel cells: A review

Author keywords

Electricity generation; Extracellular electron transfer; Mediators; Microbial fuel cells; Yeast

Indexed keywords

BIOFUELS; BIOLOGICAL FUEL CELLS; ELECTRON TRANSITIONS; ELECTRONS; MICROBIAL FUEL CELLS;

EID: 84940786479     PISSN: 15675394     EISSN: 1878562X     Source Type: Journal    
DOI: 10.1016/j.bioelechem.2015.04.001     Document Type: Article
Times cited : (95)

References (69)
  • 1
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
    • Zhuwei D., Li H., Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25:464-482.
    • (2007) Biotechnol. Adv. , vol.25 , pp. 464-482
    • Zhuwei, D.1    Li, H.2    Gu, T.3
  • 2
    • 77953160485 scopus 로고    scopus 로고
    • Microbial fuel cells, a current review
    • Franks A.E., Nevin K.P. Microbial fuel cells, a current review. Energies 2010, 3:899-919.
    • (2010) Energies , vol.3 , pp. 899-919
    • Franks, A.E.1    Nevin, K.P.2
  • 3
    • 33745225414 scopus 로고    scopus 로고
    • Bug juice: harvesting electricity with microorganisms
    • Lovley D.R. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006, 4:497-508.
    • (2006) Nat. Rev. Microbiol. , vol.4 , pp. 497-508
    • Lovley, D.R.1
  • 4
    • 77957901715 scopus 로고    scopus 로고
    • Recent development in microbial fuel cells: a review
    • Das S., Mangwani N. Recent development in microbial fuel cells: a review. J. Sci. Ind. Res. 2010, 69:727-731.
    • (2010) J. Sci. Ind. Res. , vol.69 , pp. 727-731
    • Das, S.1    Mangwani, N.2
  • 6
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7:375-381.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 375-381
    • Logan, B.E.1
  • 10
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens
    • Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym. Microbiol. Technol. 2002, 30:145-152.
    • (2002) Enzym. Microbiol. Technol. , vol.30 , pp. 145-152
    • Kim, H.J.1    Park, H.S.2    Hyun, M.S.3    Chang, I.S.4    Kim, M.5    Kim, B.H.6
  • 11
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69:1548-1555.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 12
    • 0034100017 scopus 로고    scopus 로고
    • Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens
    • Nevin K.P., Lovley D.R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 2000, 66:2248-2251.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 2248-2251
    • Nevin, K.P.1    Lovley, D.R.2
  • 13
    • 18844451775 scopus 로고    scopus 로고
    • Electricity generation using membrane and salt bridge microbial fuel cells
    • Min B., Cheng S., Logan B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005, 39:1675-1686.
    • (2005) Water Res. , vol.39 , pp. 1675-1686
    • Min, B.1    Cheng, S.2    Logan, B.E.3
  • 14
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • Chaudhuri S., Lovley D. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21:1229-1232.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1229-1232
    • Chaudhuri, S.1    Lovley, D.2
  • 15
    • 0141565121 scopus 로고    scopus 로고
    • A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
    • Rabaey K., Lissens G., Siciliano S.D., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25:1531-1535.
    • (2003) Biotechnol. Lett. , vol.25 , pp. 1531-1535
    • Rabaey, K.1    Lissens, G.2    Siciliano, S.D.3    Verstraete, W.4
  • 16
    • 55349136222 scopus 로고    scopus 로고
    • Quantification of the internal resistance distribution of microbial fuel cells
    • Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42:8101-8107.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 8101-8107
    • Fan, Y.1    Sharbrough, E.2    Liu, H.3
  • 18
    • 0012111234 scopus 로고
    • Electricity generation by micro-organisms
    • Bennetto H.P. Electricity generation by micro-organisms. Biotechnol. Educ. 1990, 1:163-168.
    • (1990) Biotechnol. Educ. , vol.1 , pp. 163-168
    • Bennetto, H.P.1
  • 19
    • 84855681402 scopus 로고    scopus 로고
    • Mediated electrochemical detection of electron transfer from the outer surface of the cell wall of Saccharomyces cerevisiae
    • Rawson F.J., Gross A.J., Garrett D.J., Downard A.J., Baronian K.H.R. Mediated electrochemical detection of electron transfer from the outer surface of the cell wall of Saccharomyces cerevisiae. Electrochem. Commun. 2012, 15:85-87.
    • (2012) Electrochem. Commun. , vol.15 , pp. 85-87
    • Rawson, F.J.1    Gross, A.J.2    Garrett, D.J.3    Downard, A.J.4    Baronian, K.H.R.5
  • 20
    • 54349090075 scopus 로고    scopus 로고
    • Performance of a yeast-mediated biological fuel cell
    • Gunawardena A., Fernando S., To F. Performance of a yeast-mediated biological fuel cell. Int. J. Mol. Sci. 2008, 9:1893-1907.
    • (2008) Int. J. Mol. Sci. , vol.9 , pp. 1893-1907
    • Gunawardena, A.1    Fernando, S.2    To, F.3
  • 21
    • 78650821695 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load
    • Raghavulu S.V., Goud R.K., Sarma P.N., Mohan S.V. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour. Technol. 2011, 102:2751-2757.
    • (2011) Bioresour. Technol. , vol.102 , pp. 2751-2757
    • Raghavulu, S.V.1    Goud, R.K.2    Sarma, P.N.3    Mohan, S.V.4
  • 22
    • 33748607161 scopus 로고    scopus 로고
    • Biological fuel cell and an application as a reserve power source
    • Walker A.L., Walker C.W. Biological fuel cell and an application as a reserve power source. J. Power Sources 2006, 160:123-129.
    • (2006) J. Power Sources , vol.160 , pp. 123-129
    • Walker, A.L.1    Walker, C.W.2
  • 24
    • 60849128248 scopus 로고    scopus 로고
    • Kinetics of anode reactions for a yeast-catalysed microbial fuel cell
    • Ganguli R., Dunn B.S. Kinetics of anode reactions for a yeast-catalysed microbial fuel cell. Fuel Cells 2009, 9:44-52.
    • (2009) Fuel Cells , vol.9 , pp. 44-52
    • Ganguli, R.1    Dunn, B.S.2
  • 26
    • 79952460814 scopus 로고    scopus 로고
    • Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers
    • Shkil H., Schulte A., Guschin D.A., Schuhmann W. Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers. Chem. Phys. Chem. 2011, 12:806-813.
    • (2011) Chem. Phys. Chem. , vol.12 , pp. 806-813
    • Shkil, H.1    Schulte, A.2    Guschin, D.A.3    Schuhmann, W.4
  • 29
    • 77649232309 scopus 로고    scopus 로고
    • Potential application of Candida melibiosica in biofuel cells
    • Hubenova Y., Mitov M. Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 2010, 78:57-61.
    • (2010) Bioelectrochemistry , vol.78 , pp. 57-61
    • Hubenova, Y.1    Mitov, M.2
  • 31
    • 80054024276 scopus 로고    scopus 로고
    • Influence of artificial mediators on yeast-based fuel cell performance
    • Babanova S., Hubenova Y., Mitov M. Influence of artificial mediators on yeast-based fuel cell performance. J. Biosci. Bioeng. 2011, 112:379-387.
    • (2011) J. Biosci. Bioeng. , vol.112 , pp. 379-387
    • Babanova, S.1    Hubenova, Y.2    Mitov, M.3
  • 32
    • 84055218425 scopus 로고    scopus 로고
    • Uncertainties of yeast-based biofuel cell operational characteristics
    • Babanova S., Hubenova Y., Mitov M., Mandjukov P. Uncertainties of yeast-based biofuel cell operational characteristics. Fuel Cells 2011, 11:824-837.
    • (2011) Fuel Cells , vol.11 , pp. 824-837
    • Babanova, S.1    Hubenova, Y.2    Mitov, M.3    Mandjukov, P.4
  • 33
    • 80052076938 scopus 로고    scopus 로고
    • Nanomodified NiFe- and NiFeP-carbon felt as anode electrocatalysts in yeast-biofuel cell
    • Hubenova Y., Rashkov R., Buchvarov V., Babanova S., Mitov M. Nanomodified NiFe- and NiFeP-carbon felt as anode electrocatalysts in yeast-biofuel cell. J. Mater. Sci. 2011, 46:7074-7081.
    • (2011) J. Mater. Sci. , vol.46 , pp. 7074-7081
    • Hubenova, Y.1    Rashkov, R.2    Buchvarov, V.3    Babanova, S.4    Mitov, M.5
  • 34
    • 84940794572 scopus 로고    scopus 로고
    • Mitochondrial origin of extracellular transferred electrons in yeast-based biofuel cells
    • Hubenova Y., Mitov M. Mitochondrial origin of extracellular transferred electrons in yeast-based biofuel cells. Bioelectrochemistry 2014, 10.1016/j.bioelechem.2014.06.005.
    • (2014) Bioelectrochemistry
    • Hubenova, Y.1    Mitov, M.2
  • 35
    • 84906947857 scopus 로고    scopus 로고
    • Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell
    • Hubenova Y., Georgiev D., Mitov M. Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell. Biotechnol. Lett. 2014, 36:1993-1997.
    • (2014) Biotechnol. Lett. , vol.36 , pp. 1993-1997
    • Hubenova, Y.1    Georgiev, D.2    Mitov, M.3
  • 36
    • 84908469276 scopus 로고    scopus 로고
    • Stable current outputs and phytate degradation by yeast-based biofuel cell
    • Hubenova Y., Georgiev D., Mitov M. Stable current outputs and phytate degradation by yeast-based biofuel cell. Yeast 2014, 31:343-348.
    • (2014) Yeast , vol.31 , pp. 343-348
    • Hubenova, Y.1    Georgiev, D.2    Mitov, M.3
  • 37
    • 0003932256 scopus 로고
    • Electrical effects accompanying the decomposition of organic compounds
    • Potter M.C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B Biol. Sci. 1911, 84:260-276.
    • (1911) Proc. R. Soc. Lond. B Biol. Sci. , vol.84 , pp. 260-276
    • Potter, M.C.1
  • 39
    • 33750471144 scopus 로고    scopus 로고
    • Optimizing biofuel cell performance using a targeted mixed mediator combination
    • Wilkinson S., Klar J., Applegarth S.P. Optimizing biofuel cell performance using a targeted mixed mediator combination. Electroanalysis 2006, 18:2001-2007.
    • (2006) Electroanalysis , vol.18 , pp. 2001-2007
    • Wilkinson, S.1    Klar, J.2    Applegarth, S.P.3
  • 41
    • 84865740492 scopus 로고    scopus 로고
    • Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture
    • Rahimnejad M., Najafpour G.D., Ghoreyshi A.A., Talebnia F., Premier G.C., Bakeri G., Kim J.R., Oh S.-E. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol. 2012, 50:575-580.
    • (2012) J. Microbiol. , vol.50 , pp. 575-580
    • Rahimnejad, M.1    Najafpour, G.D.2    Ghoreyshi, A.A.3    Talebnia, F.4    Premier, G.C.5    Bakeri, G.6    Kim, J.R.7    Oh, S.-E.8
  • 42
    • 84863527570 scopus 로고    scopus 로고
    • Electrically conductive, immobilized bioanodes for microbial fuel cells
    • Ganguli R., Dunn B. Electrically conductive, immobilized bioanodes for microbial fuel cells. Nanotechnology 2012, 23:294013-294020.
    • (2012) Nanotechnology , vol.23 , pp. 294013-294020
    • Ganguli, R.1    Dunn, B.2
  • 43
    • 67449106161 scopus 로고    scopus 로고
    • Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green energy
    • Schaetzle O., Barriere F., Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green energy. Energy Environ. Sci. 2008, 1:607-620.
    • (2008) Energy Environ. Sci. , vol.1 , pp. 607-620
    • Schaetzle, O.1    Barriere, F.2    Baronian, K.3
  • 47
    • 0035827639 scopus 로고    scopus 로고
    • The yeast cell wall and septum as paradigms of cell growth and morphogenesis
    • Cabib E., Roh D.H., Schmidt M., Crotti L.B., Varma A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 2001, 276:19679-19682.
    • (2001) J. Biol. Chem. , vol.276 , pp. 19679-19682
    • Cabib, E.1    Roh, D.H.2    Schmidt, M.3    Crotti, L.B.4    Varma, A.5
  • 50
    • 84867397458 scopus 로고    scopus 로고
    • Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions
    • Mitov M., Chorbadjijska E., Rashkov R., Hubenova Y. Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions. Int. J. Hydrogen Energy 2012, 37:16522-16526.
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 16522-16526
    • Mitov, M.1    Chorbadjijska, E.2    Rashkov, R.3    Hubenova, Y.4
  • 51
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 52
    • 70350568781 scopus 로고    scopus 로고
    • Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
    • Zhang F., Cheng S., Pant D., Bogaert G.V., Logan B.E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 2009, 11:2177-2179.
    • (2009) Electrochem. Commun. , vol.11 , pp. 2177-2179
    • Zhang, F.1    Cheng, S.2    Pant, D.3    Bogaert, G.V.4    Logan, B.E.5
  • 53
    • 51949116825 scopus 로고    scopus 로고
    • Ion exchange membrane cathodes for scalable microbial fuel cells
    • Zuo Y., Cheng S., Logan B.E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environ. Sci. Technol. 2008, 42:6967-6972.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 6967-6972
    • Zuo, Y.1    Cheng, S.2    Logan, B.E.3
  • 54
    • 84898792665 scopus 로고    scopus 로고
    • Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems
    • Ketep S., Bergel A., Calmet A., Erable B. Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems. Energy Environ. Sci. 2014, 7:1633-1637.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1633-1637
    • Ketep, S.1    Bergel, A.2    Calmet, A.3    Erable, B.4
  • 56
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: novel biotechnology for energy generation
    • Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
    • (2005) Trends Biotechnol. , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 57
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • Schafer F., Buettner G. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30:1191-1212.
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.1    Buettner, G.2
  • 58
    • 0014082605 scopus 로고
    • The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver
    • Williamson D.H., Lund P., Krebs H.A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 1967, 103:514-527.
    • (1967) Biochem. J. , vol.103 , pp. 514-527
    • Williamson, D.H.1    Lund, P.2    Krebs, H.A.3
  • 59
    • 0037040581 scopus 로고    scopus 로고
    • Regulation of corepressor function by nuclear NA{cyrillic}DH
    • Zhang Q., Piston D.W., Goodman R.H. Regulation of corepressor function by nuclear NA{cyrillic}DH. Science 2002, 295:1895-1897.
    • (2002) Science , vol.295 , pp. 1895-1897
    • Zhang, Q.1    Piston, D.W.2    Goodman, R.H.3
  • 60
    • 81055137383 scopus 로고    scopus 로고
    • Influence of inositol pyrophosphates on cellular energy dynamics
    • Szijgyarto Z., Garedew A., Azevedo C., Saiardi A. Influence of inositol pyrophosphates on cellular energy dynamics. Science 2011, 334:802-805.
    • (2011) Science , vol.334 , pp. 802-805
    • Szijgyarto, Z.1    Garedew, A.2    Azevedo, C.3    Saiardi, A.4
  • 61
    • 84887539642 scopus 로고    scopus 로고
    • Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production
    • Mao L., Verwoerd W.S. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production. Bioengineered 2013, 4:1-11.
    • (2013) Bioengineered , vol.4 , pp. 1-11
    • Mao, L.1    Verwoerd, W.S.2
  • 62
    • 84876308654 scopus 로고    scopus 로고
    • Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell
    • Elakkiya E., Matheswaran M. Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresour. Technol. 2013, 136:407-412.
    • (2013) Bioresour. Technol. , vol.136 , pp. 407-412
    • Elakkiya, E.1    Matheswaran, M.2
  • 63
    • 77950981854 scopus 로고    scopus 로고
    • Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells
    • Fornero J.J., Rosenbaum M., Angenent L.T. Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 2010, 22:832-843.
    • (2010) Electroanalysis , vol.22 , pp. 832-843
    • Fornero, J.J.1    Rosenbaum, M.2    Angenent, L.T.3
  • 64
    • 77949365653 scopus 로고    scopus 로고
    • Aerated Shewanella oneidensis in continuously-fed bioelectrochemical systems for power and hydrogen production
    • Rosenbaum M., Cotta M.A., Angenent L.T. Aerated Shewanella oneidensis in continuously-fed bioelectrochemical systems for power and hydrogen production. Biotechnol. Bioeng. 2010, 105:880-888.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 880-888
    • Rosenbaum, M.1    Cotta, M.A.2    Angenent, L.T.3
  • 65
    • 47249116517 scopus 로고    scopus 로고
    • Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes
    • Arechederra R., Minteer S.D. Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes. Electrochim. Acta 2008, 53:6698-6703.
    • (2008) Electrochim. Acta , vol.53 , pp. 6698-6703
    • Arechederra, R.1    Minteer, S.D.2
  • 66
    • 70349511957 scopus 로고    scopus 로고
    • Mitochondrial bioelectrocatalysis for biofuel cell applications
    • Arechederra R.L., Boehm K., Minteer S.D. Mitochondrial bioelectrocatalysis for biofuel cell applications. Electrochim. Acta 2009, 54:7268-7273.
    • (2009) Electrochim. Acta , vol.54 , pp. 7268-7273
    • Arechederra, R.L.1    Boehm, K.2    Minteer, S.D.3
  • 67
    • 73749085901 scopus 로고    scopus 로고
    • Testing various food-industry wastes for electricity production in microbial fuel cell
    • Cercado-Quezada B., Delia M.-L., Bergel A. Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour. Technol. 2010, 101:2748-2754.
    • (2010) Bioresour. Technol. , vol.101 , pp. 2748-2754
    • Cercado-Quezada, B.1    Delia, M.-L.2    Bergel, A.3
  • 68
    • 43949119108 scopus 로고    scopus 로고
    • Electricity production from beer brewery wastewater using single chamber microbial fuel cell
    • Wang X., Feng Y.J., Lee H. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol. 2008, 57:1117-1121.
    • (2008) Water Sci. Technol. , vol.57 , pp. 1117-1121
    • Wang, X.1    Feng, Y.J.2    Lee, H.3
  • 69
    • 41049085567 scopus 로고    scopus 로고
    • Brewery wastewater treatment using air-cathode microbial fuel cells
    • Feng Y., Wang X., Logan B.E., Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 78:873-880.
    • (2008) Appl. Microbiol. Biotechnol. , vol.78 , pp. 873-880
    • Feng, Y.1    Wang, X.2    Logan, B.E.3    Lee, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.