메뉴 건너뛰기




Volumn 4, Issue 6, 2013, Pages 420-430

Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

Author keywords

Bioelectricity; FATMIN; Flux balance analysis; Flux minimization; Flux variability analysis; MFC; Microbial fuel cell; Saccharomyces cerevisiae

Indexed keywords

ALCOHOL DEHYDROGENASE; FORMATE DEHYDROGENASE; GLUTAMATE DEHYDROGENASE; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROGENASE (NADP); MALATE DEHYDROGENASE; METHYLENETETRAHYDROFOLATE DEHYDROGENASE; PHOSPHOGLYCERATE DEHYDROGENASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; METHYLENETETRAHYDROFOLATE DEHYDROGENASE (NAD);

EID: 84887539642     PISSN: 19491018     EISSN: 19491026     Source Type: Journal    
DOI: 10.4161/bioe.26222     Document Type: Article
Times cited : (9)

References (50)
  • 1
    • 79961170850 scopus 로고    scopus 로고
    • The genomes of fermentative Saccharomyces
    • PMID:21819951
    • Dequin S, Casaregola S. The genomes of fermentative Saccharomyces. C R Biol 2011; 334:687-693; PMID:21819951; http://dx.doi.org/10.1016/j. crvi.2011.05.019
    • (2011) C R Biol , vol.334 , pp. 687-693
    • Dequin, S.1    Casaregola, S.2
  • 2
    • 0034636106 scopus 로고    scopus 로고
    • The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light
    • PMID:10760286
    • Gibbs PEM, Wang X-D, Li Z, McManus T P, McGregor WG, Lawrence CW, Maher VM. The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light. Proc Natl Acad Sci U S A 2000; 97:4186-4191; PMID:10760286; http://dx.doi.org/10.1073/ pnas.97.8.4186
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 4186-4191
    • Gibbs, P.E.M.1    Wang, X.-D.2    Li, Z.3    McManus, T.P.4    McGregor, W.G.5    Lawrence, C.W.6    Maher, V.M.7
  • 3
    • 0026446241 scopus 로고
    • Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins
    • PMID:1459447
    • Reenan RA, Kolodner RD. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 1992; 132:963-973; PMID:1459447
    • (1992) Genetics , vol.132 , pp. 963-973
    • Reenan, R.A.1    Kolodner, R.D.2
  • 4
    • 0041422531 scopus 로고    scopus 로고
    • Identification and study of a Candida albicans protein homologous to Saccharomyces cerevisiae Ssr1p, an internal cell-wall protein
    • PMID:12904553
    • Garcerá A, Martínez AI, Castillo L, Elorza M V, Sentandreu R, Valentín E. Identification and study of a Candida albicans protein homologous to Saccharomyces cerevisiae Ssr1p, an internal cell-wall protein. Microbiology 2003; 149:2137-2145; PMID:12904553; http://dx.doi.org/10.1099/mic.0.26301-0
    • (2003) Microbiology , vol.149 , pp. 2137-2145
    • Garcerá, A.1    Martínez, A.I.2    Castillo, L.3    Elorza, M.V.4    Sentandreu, R.5    Valentín, E.6
  • 5
    • 0032529169 scopus 로고    scopus 로고
    • Human and mouse homo-logs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: Linkage to checkpoint control and mammalian meiosis
    • PMID:9716408
    • Freire R, Murguía JR, Tarsounas M, Lowndes N F, Moens PB, Jackson SP. Human and mouse homo-logs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev 1998; 12:2560-2573; PMID:9716408; http://dx.doi. org/10.1101/gad.12.16.2560
    • (1998) Genes Dev , vol.12 , pp. 2560-2573
    • Freire, R.1    Murguía, J.R.2    Tarsounas, M.3    Lowndes, N.F.4    Moens, P.B.5    Jackson, S.P.6
  • 6
    • 79551642166 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae as a model organism: A comparative study
    • PMID:21311596
    • Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 2011; 6:e16015; PMID:21311596; http://dx.doi.org/10.1371/journal. pone.0016015
    • (2011) PLoS One , vol.6
    • Karathia, H.1    Vilaprinyo, E.2    Sorribas, A.3    Alves, R.4
  • 7
    • 76649111044 scopus 로고    scopus 로고
    • Advanced biofuel production in microbes
    • PMID:20084640
    • Peralta-Yahya P P, Keasling JD. Advanced biofuel production in microbes. Biotechnol J 2010; 5:147-162; PMID:20084640; http://dx.doi.org/10.1002/ biot.200900220
    • (2010) Biotechnol J , vol.5 , pp. 147-162
    • Peralta-Yahya, P.P.1    Keasling, J.D.2
  • 8
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel biotechnology for energy generation
    • PMID:15922081
    • Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 2005; 23:291-298; PMID:15922081; http://dx.doi. org/10.1016/j.tibtech.2005.04.008
    • (2005) Trends Biotechnol , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 9
    • 80054024276 scopus 로고    scopus 로고
    • Influence of artificial mediators on yeast-based fuel cell performance
    • PMID:21782506
    • Babanova S, Hubenova Y, Mitov M. Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 2011; 112:379-387; PMID:21782506; http://dx.doi.org/10.1016/j.jbiosc.2011.06.008
    • (2011) J Biosci Bioeng , vol.112 , pp. 379-387
    • Babanova, S.1    Hubenova, Y.2    Mitov, M.3
  • 10
    • 33645848149 scopus 로고    scopus 로고
    • Biofuel cells and their development
    • PMID:16569499
    • Bullen RA, Arnot TC, Lakeman JB, Walsh FC. Biofuel cells and their development. Biosens Bioelectron 2006; 21:2015-2045; PMID:16569499; http://dx.doi. org/10.1016/j.bios.2006.01.030
    • (2006) Biosens Bioelectron , vol.21 , pp. 2015-2045
    • Bullen, R.A.1    Arnot, T.C.2    Lakeman, J.B.3    Walsh, F.C.4
  • 11
    • 84881235573 scopus 로고    scopus 로고
    • Selection of organisms for systems biology study of microbial electricity generation: A review
    • Mao L, Verwoerd W. Selection of organisms for systems biology study of microbial electricity generation: a review. International Journal of Energy and Environmental Engineering 2013; 4:17; http://dx.doi. org/10.1186/2251-6832-4-17
    • (2013) International Journal of Energy and Environmental Engineering , vol.4 , pp. 17
    • Mao, L.1    Verwoerd, W.2
  • 13
    • 56249112260 scopus 로고    scopus 로고
    • Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells
    • PMID:18812160
    • Heiskanen A, Spégel C, Kostesha N, Lindahl S, Ruzgas T, Emnéus J. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Anal Biochem 2009; 384:11-19; PMID:18812160; http://dx.doi.org/10.1016/j.ab.2008.08.030
    • (2009) Anal Biochem , vol.384 , pp. 11-19
    • Heiskanen, A.1    Spégel, C.2    Kostesha, N.3    Lindahl, S.4    Ruzgas, T.5    Emnéus, J.6
  • 14
    • 84860268816 scopus 로고    scopus 로고
    • Catalytic activity of baker's yeast in a mediatorless micro-bial fuel cell
    • PMID:22357359
    • Sayed ET, Tsujiguchi T, Nakagawa N. Catalytic activity of baker's yeast in a mediatorless micro-bial fuel cell. Bioelectrochemistry 2012; 86:97-101; PMID:22357359; http://dx.doi.org/10.1016/j.bioel-echem.2012.02.001
    • (2012) Bioelectrochemistry , vol.86 , pp. 97-101
    • Sayed, E.T.1    Tsujiguchi, T.2    Nakagawa, N.3
  • 15
    • 54349090075 scopus 로고    scopus 로고
    • Performance of a yeast-mediated biological fuel cell
    • PMID:19325724
    • Gunawardena A, Fernando S, To F. Performance of a yeast-mediated biological fuel cell. Int J Mol Sci 2008; 9:1893-1907; PMID:19325724; http://dx.doi. org/10.3390/ijms9101893
    • (2008) Int J Mol Sci , vol.9 , pp. 1893-1907
    • Gunawardena, A.1    Fernando, S.2    To, F.3
  • 16
    • 78650821695 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: Influence of redox condition and substrate load
    • PMID:21146401
    • Raghavulu SV, Goud RK, Sarma PN, Mohan SV. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour Technol 2011; 102:2751-2757; PMID:21146401; http://dx.doi. org/10.1016/j.biortech.2010.11.048
    • (2011) Bioresour Technol , vol.102 , pp. 2751-2757
    • Raghavulu, S.V.1    Goud, R.K.2    Sarma, P.N.3    Mohan, S.V.4
  • 17
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • PMID:19888215
    • Oberhardt MA, Palsson BO, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009; 5:320; PMID:19888215; http://dx.doi. org/10.1038/msb.2009.77
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.O.2    Papin, J.A.3
  • 18
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • PMID:22367118
    • Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012; 10:291-305; PMID:22367118
    • (2012) Nat Rev Microbiol , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 19
    • 84884355126 scopus 로고    scopus 로고
    • Genome-scale stoichiometry analysis to elucidate the innate capability of the cyano-bacterium Synechocystis for electricity generation
    • PMID:23851491
    • Mao L, Verwoerd WS. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyano-bacterium Synechocystis for electricity generation. J Ind Microbiol Biotechnol 2013; PMID:23851491; http://dx.doi.org/10.1007/s10295-013-1308-0
    • (2013) J Ind Microbiol Biotechnol
    • Mao, L.1    Verwoerd, W.S.2
  • 20
    • 84878254630 scopus 로고    scopus 로고
    • Model-driven elucidation of the inherent capacity of Geobacter sulfurreducens for electricity generation
    • PMID:23718629
    • Mao L, Verwoerd WS. Model-driven elucidation of the inherent capacity of Geobacter sulfurreducens for electricity generation. J Biol Eng 2013; 7:14; PMID:23718629; http://dx.doi.org/10.1186/1754-1611-7-14
    • (2013) J Biol Eng , vol.7 , pp. 14
    • Mao, L.1    Verwoerd, W.S.2
  • 21
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • PMID:22663945
    • Heavner BD, Smallbone K, Barker B, Mendes P, Walker L P. Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 2012; 6:55; PMID:22663945; http://dx.doi.org/10.1186/1752-0509-6-55
    • (2012) BMC Syst Biol , vol.6 , pp. 55
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 24
    • 1542329064 scopus 로고    scopus 로고
    • Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell
    • PMID:12908088
    • Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 2004; 63:672-681; PMID:12908088; http://dx.doi.org/10.1007/s00253-003-1412-6
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 672-681
    • Kim, B.H.1    Park, H.S.2    Kim, H.J.3    Kim, G.T.4    Chang, I.S.5    Lee, J.6    Phung, N.T.7
  • 25
    • 79955469705 scopus 로고    scopus 로고
    • Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst
    • PMID:21493057
    • Haslett ND, Rawson FJ, Barriëre F, Kunze G, Pasco N, Gooneratne R, Baronian KHR. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens Bioelectron 2011; 26:3742-3747; PMID:21493057; http://dx.doi. org/10.1016/j.bios.2011.02.011
    • (2011) Biosens Bioelectron , vol.26 , pp. 3742-3747
    • Haslett, N.D.1    Rawson, F.J.2    Barriëre, F.3    Kunze, G.4    Pasco, N.5    Gooneratne, R.6    Baronian, K.H.R.7
  • 26
    • 60849128248 scopus 로고    scopus 로고
    • Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell
    • Ganguli R, Dunn BS. Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell. Fuel Cells (Weinh) 2009; 9:44-52; http://dx.doi.org/10.1002/ fuce.200800039
    • (2009) Fuel Cells (Weinh) , vol.9 , pp. 44-52
    • Ganguli, R.1    Dunn, B.S.2
  • 27
    • 0016565186 scopus 로고
    • The response of a bioelectro-chemical cell with Saccharomyces cerevisiae metabolizing glucose under various fermentation conditions
    • PMID:241440
    • Videla HA, Arvía AJ. The response of a bioelectro-chemical cell with Saccharomyces cerevisiae metabolizing glucose under various fermentation conditions. Biotechnol Bioeng 1975; 17:1529-1543; PMID:241440; http://dx.doi.org/10.1002/bit.260171011
    • (1975) Biotechnol Bioeng , vol.17 , pp. 1529-1543
    • Videla, H.A.1    Arvía, A.J.2
  • 28
    • 0033828608 scopus 로고    scopus 로고
    • Electricity production in biofuel cell using modified graphite electrode with Neutral Red
    • Park DH, Kim SK, Shin IH, Jeong YJ. Electricity production in biofuel cell using modified graphite electrode with Neutral Red. Biotechnol Lett 2000; 22:1301-1304; http://dx.doi.org/10.1023/A:1005674107841
    • (2000) Biotechnol Lett , vol.22 , pp. 1301-1304
    • Park, D.H.1    Kim, S.K.2    Shin, I.H.3    Jeong, Y.J.4
  • 29
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • PMID:10742202
    • Park DH, Zeikus JG. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 2000; 66:1292-1297; PMID:10742202; http://dx.doi.org/10.1128/ AEM.66.4.1292-1297.2000
    • (2000) Appl Environ Microbiol , vol.66 , pp. 1292-1297
    • Park, D.H.1    Zeikus, J.G.2
  • 30
    • 0034609791 scopus 로고    scopus 로고
    • The large-scale organization of metabolic networks
    • PMID:11034217
    • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. The large-scale organization of metabolic networks. Nature 2000; 407:651-654; PMID:11034217; http:// dx.doi.org/10.1038/35036627
    • (2000) Nature , vol.407 , pp. 651-654
    • Jeong, H.1    Tombor, B.2    Albert, R.3    Oltvai, Z.N.4    Barabási, A.L.5
  • 31
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network
    • PMID:14578455
    • Famili I, Förster J, Nielsen J, Palsson BO. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 2003; 100:13134-13139; PMID:14578455; http://dx.doi. org/10.1073/pnas.2235812100
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 13134-13139
    • Famili, I.1    Förster, J.2    Nielsen, J.3    Palsson, B.O.4
  • 32
    • 0035125986 scopus 로고    scopus 로고
    • In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    • PMID:11175725
    • Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001; 19:125-130; PMID:11175725; http://dx.doi. org/10.1038/84379
    • (2001) Nat Biotechnol , vol.19 , pp. 125-130
    • Edwards, J.S.1    Ibarra, R.U.2    Palsson, B.O.3
  • 33
    • 6944224154 scopus 로고    scopus 로고
    • Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes
    • PMID:15448692
    • Fong SS, Palsson BO. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 2004; 36:1056-1058; PMID:15448692; http://dx.doi.org/10.1038/ng1432
    • (2004) Nat Genet , vol.36 , pp. 1056-1058
    • Fong, S.S.1    Palsson, B.O.2
  • 34
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • PMID:7986045
    • Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994; 60:3724-3731; PMID:7986045
    • (1994) Appl Environ Microbiol , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.O.2
  • 35
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • PMID:12432395
    • Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 2002; 420:186-189; PMID:12432395; http://dx.doi.org/10.1038/ nature01149
    • (2002) Nature , vol.420 , pp. 186-189
    • Ibarra, R.U.1    Edwards, J.S.2    Palsson, B.O.3
  • 36
    • 0038293216 scopus 로고    scopus 로고
    • Optimization-based framework for inferring and testing hypothesized metabolic objective functions
    • PMID:12673766
    • Burgard A P, Maranas CD. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 2003; 82:670-677; PMID:12673766; http://dx.doi.org/10.1002/ bit.10617
    • (2003) Biotechnol Bioeng , vol.82 , pp. 670-677
    • Burgard, A.P.1    Maranas, C.D.2
  • 37
    • 84875667752 scopus 로고    scopus 로고
    • Equispaced Pareto front construction for constrained bi-objective optimization
    • Pereyra V, Saunders M, Castillo J. Equispaced Pareto front construction for constrained bi-objective optimization. Math Comput Model 2013; 57:2122-2131; http://dx.doi.org/10.1016/j.mcm.2010.12.044
    • (2013) Math Comput Model , vol.57 , pp. 2122-2131
    • Pereyra, V.1    Saunders, M.2    Castillo, J.3
  • 38
    • 77954814751 scopus 로고    scopus 로고
    • Evolving molecules using multi-objective optimization: Applying to ADME/Tox
    • PMID:20438859
    • Ekins S, Honeycutt JD, Metz J T. Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov Today 2010; 15:451-460; PMID:20438859; http://dx.doi.org/10.1016/j. drudis.2010.04.003
    • (2010) Drug Discov Today , vol.15 , pp. 451-460
    • Ekins, S.1    Honeycutt, J.D.2    Metz, J.T.3
  • 39
    • 79251593951 scopus 로고    scopus 로고
    • Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes
    • PMID:21216140
    • Kim K-Y, Chae K-J, Choi M-J, Ajayi F F, Jang A, Kim C-W, Kim IS. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour Technol 2011; 102:4144-4149; PMID:21216140; http:// dx.doi.org/10.1016/j.biortech.2010.12.036
    • (2011) Bioresour Technol , vol.102 , pp. 4144-4149
    • Kim, K.-Y.1    Chae, K.-J.2    Choi, M.-J.3    Ajayi, F.F.4    Jang, A.5    Kim, C.-W.6    Kim, I.S.7
  • 40
    • 69249102097 scopus 로고    scopus 로고
    • Genome-scale gene/reaction essentiality and synthetic lethality analysis
    • PMID:19690570
    • Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 2009; 5:301; PMID:19690570; http://dx.doi.org/10.1038/msb.2009.56
    • (2009) Mol Syst Biol , vol.5 , pp. 301
    • Suthers, P.F.1    Zomorrodi, A.2    Maranas, C.D.3
  • 41
    • 78650595350 scopus 로고    scopus 로고
    • Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
    • PMID:21190580
    • Zomorrodi AR, Maranas CD. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 2010; 4:178; PMID:21190580; http://dx.doi.org/10.1186/1752-0509-4-178
    • (2010) BMC Syst Biol , vol.4 , pp. 178
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 43
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracel-lular flux states in yeast
    • PMID:19321003
    • Mo ML, Palsson BO, Herrgård MJ. Connecting extracellular metabolomic measurements to intracel-lular flux states in yeast. BMC Syst Biol 2009; 3:37; PMID:19321003; http://dx.doi.org/10.1186/1752-0509-3-37
    • (2009) BMC Syst Biol , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgård, M.J.3
  • 44
    • 0028108519 scopus 로고
    • Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use
    • Varma A, Palsson B.O. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Nat Biotechnol 1994; 12:994-998; http://dx.doi.org/10.1038/nbt1094-994
    • (1994) Nat Biotechnol , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 45
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • PMID:20212490
    • Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol 2010; 28:245-248; PMID:20212490; http://dx.doi.org/10.1038/nbt.1614
    • (2010) Nat Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 48
    • 33645761181 scopus 로고    scopus 로고
    • Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
    • PMID:16646485
    • Cheng S, Liu H, Logan BE. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 2006; 40:2426-2432; PMID:16646485; http://dx.doi.org/10.1021/ es051652w
    • (2006) Environ Sci Technol , vol.40 , pp. 2426-2432
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 49
    • 33748571739 scopus 로고    scopus 로고
    • Challenges and constraints of using oxygen cathodes in microbial fuel cells
    • PMID:16999088
    • Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 2006; 40:5193-5199; PMID:16999088; http:// dx.doi.org/10.1021/es060332p
    • (2006) Environ Sci Technol , vol.40 , pp. 5193-5199
    • Zhao, F.1    Harnisch, F.2    Schröder, U.3    Scholz, F.4    Bogdanoff, P.5    Herrmann, I.6
  • 50
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • PMID:17627307
    • Schröder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 2007; 9:2619-2629; PMID:17627307; http://dx.doi.org/10.1039/b703627m
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 2619-2629
    • Schröder, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.