-
1
-
-
0037074898
-
A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens
-
Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 2002, 30:145-152.
-
(2002)
Enzyme Microb. Technol.
, vol.30
, pp. 145-152
-
-
Kim, H.J.1
Park, H.S.2
Hyun, M.S.3
Chang, I.S.4
Kim, M.5
Kim, B.H.6
-
2
-
-
0037337606
-
Electricity production by Geobacter sulfurreducens attached to electrodes
-
Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69:1548-1555.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1548-1555
-
-
Bond, D.R.1
Lovley, D.R.2
-
3
-
-
0034100017
-
Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens
-
Nevin K.P., Lovley D.R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 2000, 66:2248-2251.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 2248-2251
-
-
Nevin, K.P.1
Lovley, D.R.2
-
4
-
-
18844451775
-
Electricity generation using membrane and salt bridge microbial fuel cells
-
Min B., Cheng S., Logan B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005, 39:1675-1686.
-
(2005)
Water Res.
, vol.39
, pp. 1675-1686
-
-
Min, B.1
Cheng, S.2
Logan, B.E.3
-
5
-
-
0141542682
-
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
-
Chaudhuri S., Lovley D. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21:1229-1232.
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 1229-1232
-
-
Chaudhuri, S.1
Lovley, D.2
-
6
-
-
34447285505
-
A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
-
Zhuwei D., Li H., Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25:464-482.
-
(2007)
Biotechnol. Adv.
, vol.25
, pp. 464-482
-
-
Zhuwei, D.1
Li, H.2
Gu, T.3
-
7
-
-
77953160485
-
Microbial fuel cells, a current review
-
Franks A.E., Nevin K.P. Microbial fuel cells, a current review. Energies 2010, 3:899-919.
-
(2010)
Energies
, vol.3
, pp. 899-919
-
-
Franks, A.E.1
Nevin, K.P.2
-
8
-
-
33745225414
-
Bug juice: harvesting electricity with microorganisms
-
Lovley D.R. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006, 4:497-508.
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, pp. 497-508
-
-
Lovley, D.R.1
-
9
-
-
0037390947
-
Membrane fluidity sensoring microbial fuel cell
-
Choi Y., Jung E., Kim S., Jung S. Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry 2003, 59:121-127.
-
(2003)
Bioelectrochemistry
, vol.59
, pp. 121-127
-
-
Choi, Y.1
Jung, E.2
Kim, S.3
Jung, S.4
-
10
-
-
0021799472
-
Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields
-
Thurston C.F., Bennetto H.P., Delaney G.M., Mason J.R., Roller S.D., Stirling J.L. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 1985, 131:1393-1401.
-
(1985)
J. Gen. Microbiol.
, vol.131
, pp. 1393-1401
-
-
Thurston, C.F.1
Bennetto, H.P.2
Delaney, G.M.3
Mason, J.R.4
Roller, S.D.5
Stirling, J.L.6
-
11
-
-
0023360722
-
Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens
-
Vega C.A., Fernandez I. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochem. Bioenerg. 1987, 17:217-222.
-
(1987)
Bioelectrochem. Bioenerg.
, vol.17
, pp. 217-222
-
-
Vega, C.A.1
Fernandez, I.2
-
12
-
-
4644305766
-
Biofuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey K., Boon N., Siciliano S.D., Verhaege M., Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70:5373-5382.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
13
-
-
18344391948
-
Microbial phenazine production enhances electron transfer in biofuel cells
-
Rabaey K., Boon N., Hofte M., Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 2005, 39:3401-3408.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 3401-3408
-
-
Rabaey, K.1
Boon, N.2
Hofte, M.3
Verstraete, W.4
-
14
-
-
20744456285
-
Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant
-
Rhoads A., Beyenal H., Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 2005, 39:4666-4671.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 4666-4671
-
-
Rhoads, A.1
Beyenal, H.2
Lewandowski, Z.3
-
15
-
-
32344442107
-
Procedure for determining maximum sustainable power generated by microbial fuel cells
-
Menicucci J., Beyenal H., Marsili E., Veluchamy R.A., Demir G., Lewandowski Z. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ. Sci. Technol. 2006, 40:1062-1068.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 1062-1068
-
-
Menicucci, J.1
Beyenal, H.2
Marsili, E.3
Veluchamy, R.A.4
Demir, G.5
Lewandowski, Z.6
-
16
-
-
71049170399
-
Microbial fuel cell-type biochemical oxygen demand sensor
-
American Scientific Publishers, C.A. Grimes, E.C. Dickey, M.V. Pishko (Eds.)
-
Kim B.H., Chang I.S., Moon H. Microbial fuel cell-type biochemical oxygen demand sensor. Encyclopedia of Sensors 2006, vol. X:1-12. American Scientific Publishers. C.A. Grimes, E.C. Dickey, M.V. Pishko (Eds.).
-
(2006)
Encyclopedia of Sensors
, vol.10
, pp. 1-12
-
-
Kim, B.H.1
Chang, I.S.2
Moon, H.3
-
17
-
-
54349090075
-
Performance of a yeast-mediated biological fuel cell
-
Gunawardena A., Fernando S., To F. Performance of a yeast-mediated biological fuel cell. Int. J. Mol. Sci. 2008, 9:1893-1907.
-
(2008)
Int. J. Mol. Sci.
, vol.9
, pp. 1893-1907
-
-
Gunawardena, A.1
Fernando, S.2
To, F.3
-
18
-
-
33748607161
-
Biological fuel cell and an application as a reserve power source
-
Walker A.L., Walker Jr C.W. Biological fuel cell and an application as a reserve power source. J. Power Sources 2006, 160:123-129.
-
(2006)
J. Power Sources
, vol.160
, pp. 123-129
-
-
Walker, A.L.1
Walker, C.W.2
-
20
-
-
60849128248
-
Kinetics of anode reactions for a yeast-catalysed microbial fuel cell
-
Ganguli R., Dunn B.S. Kinetics of anode reactions for a yeast-catalysed microbial fuel cell. Fuel Cells 2009, 9:44-52.
-
(2009)
Fuel Cells
, vol.9
, pp. 44-52
-
-
Ganguli, R.1
Dunn, B.S.2
-
21
-
-
33947574298
-
Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell
-
Prasad D., Arun S., Murugesan M., Padmanaban S., Satyanarayanan R.S., Berchmans S., Yegnaraman V. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens. Bioelectron. 2007, 22:2604-2610.
-
(2007)
Biosens. Bioelectron.
, vol.22
, pp. 2604-2610
-
-
Prasad, D.1
Arun, S.2
Murugesan, M.3
Padmanaban, S.4
Satyanarayanan, R.S.5
Berchmans, S.6
Yegnaraman, V.7
-
22
-
-
79952460814
-
Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers
-
Shkil H., Schulte A., Guschin D.A., Schuhmann W. Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers. Chem. Phys. Chem. 2011, 12:806-813.
-
(2011)
Chem. Phys. Chem.
, vol.12
, pp. 806-813
-
-
Shkil, H.1
Schulte, A.2
Guschin, D.A.3
Schuhmann, W.4
-
23
-
-
79955469705
-
Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst
-
Haslett N.D., Rawson F.J., Barriëre F., Kunze G., Pasco N., Gooneratne R., Baronian K.H.R. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens. Bioelectron. 2011, 26:3742-3747.
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 3742-3747
-
-
Haslett, N.D.1
Rawson, F.J.2
Barriëre, F.3
Kunze, G.4
Pasco, N.5
Gooneratne, R.6
Baronian, K.H.R.7
-
24
-
-
84896695041
-
Identification of uric acid as the redox molecule secreted by the yeast Arxula adeninivorans
-
Williams J., Trautwein-Schult A., Jankowska D., Kunze G., Squire M.A., Baronian K. Identification of uric acid as the redox molecule secreted by the yeast Arxula adeninivorans. Appl. Microbiol. Biotechnol. 2014, 98:2223-2229.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 2223-2229
-
-
Williams, J.1
Trautwein-Schult, A.2
Jankowska, D.3
Kunze, G.4
Squire, M.A.5
Baronian, K.6
-
25
-
-
77649232309
-
Potential application of Candida melibiosica in biofuel cells
-
Hubenova Y., Mitov M. Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 2010, 78:57-61.
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 57-61
-
-
Hubenova, Y.1
Mitov, M.2
-
26
-
-
78651410291
-
Improvement of yeast - biofuel cell output by electrode modifications
-
Hubenova Y., Rashkov R., Buchvarov V., Arnaudova M., Babanova S., Mitov M. Improvement of yeast - biofuel cell output by electrode modifications. Ind. Eng. Chem. Res. 2011, 50:557-564.
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 557-564
-
-
Hubenova, Y.1
Rashkov, R.2
Buchvarov, V.3
Arnaudova, M.4
Babanova, S.5
Mitov, M.6
-
27
-
-
0034057725
-
In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria
-
Overkamp K.M., Bakker B.M., Kötter P., van Tuijl A., de Vries S., van Dijken J.P., Pronk J.T. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J. Bacteriol. 2000, 182:2823-2830.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 2823-2830
-
-
Overkamp, K.M.1
Bakker, B.M.2
Kötter, P.3
van Tuijl, A.4
de Vries, S.5
van Dijken, J.P.6
Pronk, J.T.7
-
28
-
-
0022507007
-
Redox balances in the metabolism of sugars by yeasts
-
van Dijken J.P., Scheffers W.A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 1986, 32:199-224.
-
(1986)
FEMS Microbiol. Rev.
, vol.32
, pp. 199-224
-
-
van Dijken, J.P.1
Scheffers, W.A.2
-
29
-
-
0014734642
-
Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis
-
von Jagow G., Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur. J. Biochem. 1970, 12:583-592.
-
(1970)
Eur. J. Biochem.
, vol.12
, pp. 583-592
-
-
von Jagow, G.1
Klingenberg, M.2
-
30
-
-
15644371838
-
The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane
-
Lee A.C., Xu X., Blachly-Dyson E., Forte M., Colombini M. The role of yeast VDAC genes on the permeability of the mitochondrial outer membrane. J. Membr. Biol. 1998, 161:173-181.
-
(1998)
J. Membr. Biol.
, vol.161
, pp. 173-181
-
-
Lee, A.C.1
Xu, X.2
Blachly-Dyson, E.3
Forte, M.4
Colombini, M.5
-
31
-
-
80054024276
-
Influence of artificial mediators on yeast-based fuel cell performance
-
Babanova S., Hubenova Y., Mitov M. Influence of artificial mediators on yeast-based fuel cell performance. J. Biosci. Bioeng. 2011, 112:379-387.
-
(2011)
J. Biosci. Bioeng.
, vol.112
, pp. 379-387
-
-
Babanova, S.1
Hubenova, Y.2
Mitov, M.3
-
32
-
-
33748607161
-
Biological fuel cell and an application as a reserve power source
-
Walker A.L., Walker Jr C.W. Biological fuel cell and an application as a reserve power source. J. Power Sources 2006, 160:123-129.
-
(2006)
J. Power Sources
, vol.160
, pp. 123-129
-
-
Walker, A.L.1
Walker, C.W.2
-
33
-
-
33947574298
-
Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell
-
Prasad D., Arun S., Murugesan M., Padmanaban S., Satyanarayanan R.S., Berchmans S., Yegnaraman V. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens. Bioelectron. 2007, 22:2604-2610.
-
(2007)
Biosens. Bioelectron.
, vol.22
, pp. 2604-2610
-
-
Prasad, D.1
Arun, S.2
Murugesan, M.3
Padmanaban, S.4
Satyanarayanan, R.S.5
Berchmans, S.6
Yegnaraman, V.7
-
34
-
-
84887539642
-
Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production
-
Mao L., Verwoerd W.S. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production. Bioengineered 2013, 4:1-11.
-
(2013)
Bioengineered
, vol.4
, pp. 1-11
-
-
Mao, L.1
Verwoerd, W.S.2
-
35
-
-
47249116517
-
Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes
-
Arechederra R., Minteer S.D. Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes. Electrochim. Acta 2008, 53:6698-6703.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 6698-6703
-
-
Arechederra, R.1
Minteer, S.D.2
-
36
-
-
70349511957
-
Mitochondrial bioelectrocatalysis for biofuel cell applications
-
Arechederra R., Boehm K., Minteer S.D. Mitochondrial bioelectrocatalysis for biofuel cell applications. Electrochim. Acta 2009, 54:7268-7273.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 7268-7273
-
-
Arechederra, R.1
Boehm, K.2
Minteer, S.D.3
-
37
-
-
0025239273
-
Isolation of subcellular organelles
-
Storrie B., Madden E. Isolation of subcellular organelles. Methods Enzymol. 1990, 182:203-235.
-
(1990)
Methods Enzymol.
, vol.182
, pp. 203-235
-
-
Storrie, B.1
Madden, E.2
-
38
-
-
34250244093
-
Spectrophotometric titrations of ferricytochrome c with ferrohexacyanide in the pH range 5 to 7
-
Zabinski-Snopko R.M., Czerlinski G.H. Spectrophotometric titrations of ferricytochrome c with ferrohexacyanide in the pH range 5 to 7. J. Biol. Phys. 1981, 9:155-167.
-
(1981)
J. Biol. Phys.
, vol.9
, pp. 155-167
-
-
Zabinski-Snopko, R.M.1
Czerlinski, G.H.2
-
39
-
-
0017253142
-
Bowers determination of the molar absorptivity of NADH
-
McComb R.B., Bond L.W., Burnett R.W., Keech R.C., Jr G.N. Bowers determination of the molar absorptivity of NADH. Clin. Chem. 1976, 22:141-150.
-
(1976)
Clin. Chem.
, vol.22
, pp. 141-150
-
-
McComb, R.B.1
Bond, L.W.2
Burnett, R.W.3
Keech, R.C.4
-
40
-
-
57749106270
-
Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis
-
Garmier M., Carroll A.J., Delannoy E., Vallet C., Day D.A., Small I.D., Millar A.H. Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiol. 2008, 148:1324-1341.
-
(2008)
Plant Physiol.
, vol.148
, pp. 1324-1341
-
-
Garmier, M.1
Carroll, A.J.2
Delannoy, E.3
Vallet, C.4
Day, D.A.5
Small, I.D.6
Millar, A.H.7
-
41
-
-
79955528923
-
Alternative mitochondrial electron transfer as a novel strategy for neuroprotection
-
Wen Y., Li W., Poteet E.C., Xie L., Tan C., Yan L.J., Ju X., Liu R., Qian H., Marvin M.A., Goldberg M.S., She H., Mao Z., Simpkins J.W., Yang S.H. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 2011, 286:16504-16515.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16504-16515
-
-
Wen, Y.1
Li, W.2
Poteet, E.C.3
Xie, L.4
Tan, C.5
Yan, L.J.6
Ju, X.7
Liu, R.8
Qian, H.9
Marvin, M.A.10
Goldberg, M.S.11
She, H.12
Mao, Z.13
Simpkins, J.W.14
Yang, S.H.15
-
42
-
-
84940794053
-
Methylene blue protects mitochondrial respiration from ethanol withdrawal stress
-
Jung M., Metzger D. Methylene blue protects mitochondrial respiration from ethanol withdrawal stress. Adv. Biosci. Biotechnol. 2013, 4:24-34.
-
(2013)
Adv. Biosci. Biotechnol.
, vol.4
, pp. 24-34
-
-
Jung, M.1
Metzger, D.2
-
43
-
-
33645913240
-
Methylene blue prevents neurodegeneration caused by rotenone in the retina
-
Zhang X., Rojas J.C., Gonzalez-Lima F. Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox. Res. 2006, 9:47-57.
-
(2006)
Neurotox. Res.
, vol.9
, pp. 47-57
-
-
Zhang, X.1
Rojas, J.C.2
Gonzalez-Lima, F.3
-
44
-
-
40449086359
-
Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways
-
Atamna H., Nguyen A., Schultz C., Boyle K., Newberry J., Kato H., Ames B.N. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J. 2008, 22:703-712.
-
(2008)
FASEB J.
, vol.22
, pp. 703-712
-
-
Atamna, H.1
Nguyen, A.2
Schultz, C.3
Boyle, K.4
Newberry, J.5
Kato, H.6
Ames, B.N.7
-
45
-
-
33746329868
-
Energy converting NADH:quinone oxidoreductase (complex I)
-
Brandt U. Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 2006, 75:69-92.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 69-92
-
-
Brandt, U.1
-
46
-
-
66449105882
-
Architecture of complex I and its implications for electron transfer and proton pumping
-
Zickermann V., Kerscher S., Zwicker K., Tocilescu M.A., Radermacher M., Brandt U. Architecture of complex I and its implications for electron transfer and proton pumping. Biochim. Biophys. Acta 2009, 1787:574-583.
-
(2009)
Biochim. Biophys. Acta
, vol.1787
, pp. 574-583
-
-
Zickermann, V.1
Kerscher, S.2
Zwicker, K.3
Tocilescu, M.A.4
Radermacher, M.5
Brandt, U.6
|