-
1
-
-
0028929803
-
Angiogenesis in cancer, vascular, rheumatoid and other disease
-
Folkman J, (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1: 27–30. doi: 10.1038/nm0195-27 7584949
-
(1995)
Nature Med
, vol.1
, pp. 27-30
-
-
Folkman, J.1
-
2
-
-
0030952289
-
Mechanisms of angiogenesis
-
Risau W, (1997). Mechanisms of angiogenesis. Nature 386: 671–674. doi: 10.1038/386671a0 9109485
-
(1997)
Nature
, vol.386
, pp. 671-674
-
-
Risau, W.1
-
3
-
-
0034509645
-
-
Tonnesen MG, Feng X, Clark RA, (2000). Angiogenesis in wound healing. in Journal of Investigative Dermatology Symposium Proceedings (Vol. 5, No. 1, pp. 40–46). Nature Publishing Group.
-
(2000)
Journal of Investigative Dermatology Symposium Proceedings
, vol.Vol. 5
, Issue.No. 1
, pp. 40-46
-
-
Tonnesen, M.G.1
Feng, X.2
Clark, R.A.3
-
4
-
-
0030973217
-
The codependence of angiogenesis and chronic inflammation
-
Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD, (1997). The codependence of angiogenesis and chronic inflammation. The FASEB J 11: 457–465. 9194526
-
(1997)
The FASEB J
, vol.11
, pp. 457-465
-
-
Jackson, J.R.1
Seed, M.P.2
Kircher, C.H.3
Willoughby, D.A.4
Winkler, J.D.5
-
5
-
-
33751225092
-
Angiopoietins: a link between angiogenesis and inflammation
-
Fiedler U, Augustin HG, (2006). Angiopoietins: a link between angiogenesis and inflammation. Trends in Immunology 27: 552–558. doi: 10.1016/j.it.2006.10.004 17045842
-
(2006)
Trends in Immunology
, vol.27
, pp. 552-558
-
-
Fiedler, U.1
Augustin, H.G.2
-
6
-
-
30744479430
-
Angiogenesis in life, disease and medicine
-
Carmeliet P, (2005). Angiogenesis in life, disease and medicine. Nature 438: 932–936. doi: 10.1038/nature04478 16355210
-
(2005)
Nature
, vol.438
, pp. 932-936
-
-
Carmeliet, P.1
-
7
-
-
0034648765
-
Angiogenesis in cancer and other diseases
-
Carmeliet P, Jain RK, (2000). Angiogenesis in cancer and other diseases. Nature 407: 249–257. doi: 10.1038/35025220 11001068
-
(2000)
Nature
, vol.407
, pp. 249-257
-
-
Carmeliet, P.1
Jain, R.K.2
-
8
-
-
0030576517
-
Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
-
Hanahan D, Folkman J, (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364. doi: 10.1016/S0092-8674(00)80108-7 8756718
-
(1996)
Cell
, vol.86
, pp. 353-364
-
-
Hanahan, D.1
Folkman, J.2
-
9
-
-
0034092011
-
Tumor angiogenesis: past, present and the near future
-
Kerbel RS, (2000). Tumor angiogenesis: past, present and the near future. Carcinogenesis 21: 505–515. doi: 10.1093/carcin/21.3.505 10688871
-
(2000)
Carcinogenesis
, vol.21
, pp. 505-515
-
-
Kerbel, R.S.1
-
10
-
-
30744449235
-
Angiogenesis as a therapeutic target
-
Ferrara N, Kerbel RS, (2005). Angiogenesis as a therapeutic target. Nature 438: 967–974. doi: 10.1038/nature04483 16355214
-
(2005)
Nature
, vol.438
, pp. 967-974
-
-
Ferrara, N.1
Kerbel, R.S.2
-
11
-
-
2542520723
-
Two Steps Forward in the Treatment of Colorectal Cancer
-
Mayer RJ, (2004). Two Steps Forward in the Treatment of Colorectal Cancer. N Engl J Med 350: 2406–2408. doi: 10.1056/NEJMe048098 15175443
-
(2004)
N Engl J Med
, vol.350
, pp. 2406-2408
-
-
Mayer, R.J.1
-
12
-
-
2542561964
-
Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer
-
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, et al (2004). Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. N Engl J Med 350: 2335–2342. doi: 10.1056/NEJMoa032691 15175435
-
(2004)
N Engl J Med
, vol.350
, pp. 2335-2342
-
-
Hurwitz, H.1
Fehrenbacher, L.2
Novotny, W.3
Cartwright, T.4
Hainsworth, J.5
-
13
-
-
11844254414
-
Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy
-
Jain RK, (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62. doi: 10.1126/science.1104819 15637262
-
(2005)
Science
, vol.307
, pp. 58-62
-
-
Jain, R.K.1
-
14
-
-
0037815292
-
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia
-
Gerhardt H, Golding M, Fruttiger M, et al (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–1177 doi: 10.1083/jcb.200302047 12810700
-
(2003)
J Cell Biol
, vol.161
, pp. 1163-1177
-
-
Gerhardt, H.1
Golding, M.2
Fruttiger, M.3
-
15
-
-
34250774463
-
Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior
-
Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH, (2007). Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardio 49: 2379–2393. doi: 10.1016/j.jacc.2007.02.059
-
(2007)
J Am Coll Cardio
, vol.49
, pp. 2379-2393
-
-
Chatzizisis, Y.S.1
Coskun, A.U.2
Jonas, M.3
Edelman, E.R.4
Feldman, C.L.5
Stone, P.H.6
-
16
-
-
84875983737
-
Angiogenesis: an adaptive dynamic biological patterning problem
-
Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR, (2013). Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comp Biol, 9: e1002983. doi: 10.1371/journal.pcbi.1002983
-
(2013)
PLoS Comp Biol
, vol.9
, pp. e1002983
-
-
Secomb, T.W.1
Alberding, J.P.2
Hsu, R.3
Dewhirst, M.W.4
Pries, A.R.5
-
18
-
-
61349168351
-
A mechanosensitive transcriptional mechanism that controls angiogenesis
-
Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, et al (2009). A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457: 1103–1108. doi: 10.1038/nature07765 19242469
-
(2009)
Nature
, vol.457
, pp. 1103-1108
-
-
Mammoto, A.1
Connor, K.M.2
Mammoto, T.3
Yung, C.W.4
Huh, D.5
Aderman, C.M.6
-
19
-
-
78649671324
-
Expression of ADAMTS1 in endothelial cells is induced by shear stress and suppressed in sprouting capillaries
-
Hohberg M, Knöchel J, Hoffmann CJ, Chlench S, Wunderlich W, Alter A, et al (2010). Expression of ADAMTS1 in endothelial cells is induced by shear stress and suppressed in sprouting capillaries. J Cell Physiol 226: 350–361. doi: 10.1002/jcp.22340
-
(2010)
J Cell Physiol
, vol.226
, pp. 350-361
-
-
Hohberg, M.1
Knöchel, J.2
Hoffmann, C.J.3
Chlench, S.4
Wunderlich, W.5
Alter, A.6
-
20
-
-
77950987909
-
The effects of substrate elasticity on endothelial cell network formation and traction force generation. 31st Annual Inter. Conference of the IEEE EMBS, 3343–3345
-
Califano JP, Reinhart-King CA (2009). The effects of substrate elasticity on endothelial cell network formation and traction force generation. 31st Annual Inter. Conference of the IEEE EMBS, 3343–3345, Minneapolis.
-
(2009)
-
-
Califano, J.P.1
Reinhart-King, C.A.2
-
21
-
-
58749096540
-
Cell-cell mechanical communication through compliant substrates
-
Reinhart-King CA, Dembo M, Hammer DA, (2008). Cell-cell mechanical communication through compliant substrates. Biophys J 95: 6044–6051. doi: 10.1529/biophysj.107.127662 18775964
-
(2008)
Biophys J
, vol.95
, pp. 6044-6051
-
-
Reinhart-King, C.A.1
Dembo, M.2
Hammer, D.A.3
-
22
-
-
78049238220
-
Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients
-
Shamloo A, Heilshorn SC, (2010). Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10: 3061–3068. doi: 10.1039/c005069e 20820484
-
(2010)
Lab Chip
, vol.10
, pp. 3061-3068
-
-
Shamloo, A.1
Heilshorn, S.C.2
-
23
-
-
34047260282
-
Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model
-
Jain RK, Tong RT, Munn LL, (2007). Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67: 2729–2735. doi: 10.1158/0008-5472.CAN-06-4102 17363594
-
(2007)
Cancer Res
, vol.67
, pp. 2729-2735
-
-
Jain, R.K.1
Tong, R.T.2
Munn, L.L.3
-
24
-
-
62749193771
-
Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature
-
Wu J, Long Q, Xu S, Padhani AR, (2009). Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J Biomech 42: 712–721. doi: 10.1016/j.jbiomech.2009.01.009 19268290
-
(2009)
J Biomech
, vol.42
, pp. 712-721
-
-
Wu, J.1
Long, Q.2
Xu, S.3
Padhani, A.R.4
-
25
-
-
79957769556
-
Tumor Angiogenesis and Vascular Patterning: A Mathematical Model
-
Travasso RDM, Corvera Poiré E, Castro M, Rodríguez-Manzaneque JC, Hernández-Machado A, (2011). Tumor Angiogenesis and Vascular Patterning: A Mathematical Model. PLoS ONE 6: e19989. doi: 10.1371/journal.pone.0019989 21637756
-
(2011)
PLoS ONE
, vol.6
, pp. e19989
-
-
Travasso, R.D.M.1
Corvera Poiré, E.2
Castro, M.3
Rodríguez-Manzaneque, J.C.4
Hernández-Machado, A.5
-
26
-
-
23944492296
-
The role of mechanical stresses in angiogenesis
-
Shiu Y-T, Weiss JA, Hoying JB, Iwamoto MN, Joung IS, Quam CT, (2005). The role of mechanical stresses in angiogenesis. Critical Rev Biomed Eng 33: 431–510. doi: 10.1615/CritRevBiomedEng.v33.i5.10
-
(2005)
Critical Rev Biomed Eng
, vol.33
, pp. 431-510
-
-
Shiu, Y.-T.1
Weiss, J.A.2
Hoying, J.B.3
Iwamoto, M.N.4
Joung, I.S.5
Quam, C.T.6
-
27
-
-
84872770788
-
Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric
-
Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, et al (2013). Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PloS ONE, 8: e51951. doi: 10.1371/journal.pone.0051951 23372647
-
(2013)
PloS ONE
, vol.8
, pp. e51951
-
-
Neal, M.L.1
Trister, A.D.2
Cloke, T.3
Sodt, R.4
Ahn, S.5
-
28
-
-
76149128357
-
Nonlinear modelling of cancer: bridging the gap between cells and tumours
-
Lowengrub JS, Frieboes HB, Jin F, Chuang Y-L, Li X, Macklin P, Wise SM, Cristini V, (2010). Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23: R1–R9. doi: 10.1088/0951-7715/23/1/R01 20808719
-
(2010)
Nonlinearity
, vol.23
, pp. R1-R9
-
-
Lowengrub, J.S.1
Frieboes, H.B.2
Jin, F.3
Chuang, Y.-L.4
Li, X.5
Macklin, P.6
Wise, S.M.7
Cristini, V.8
-
29
-
-
77952954625
-
Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis
-
Frieboes HB, Jin F, Chuang Y-L, Wise SM, Lowengrub JS, Cristini V, (2010). Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis. J Theor Biol 264: 1254–1278. doi: 10.1016/j.jtbi.2010.02.036 20303982
-
(2010)
J Theor Biol
, vol.264
, pp. 1254-1278
-
-
Frieboes, H.B.1
Jin, F.2
Chuang, Y.-L.3
Wise, S.M.4
Lowengrub, J.S.5
Cristini, V.6
-
30
-
-
33748774664
-
A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α
-
Qutub AA, Popel AS, (2006). A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. J Cell Sci 119: 3467–3480. doi: 10.1242/jcs.03087 16899821
-
(2006)
J Cell Sci
, vol.119
, pp. 3467-3480
-
-
Qutub, A.A.1
Popel, A.S.2
-
31
-
-
34548381311
-
Pathway switching explains the sharp response characteristic of hypoxia response network
-
Yu Y, Wang G, Simha R, Peng W, Turano F, Zeng C, (2007). Pathway switching explains the sharp response characteristic of hypoxia response network. PLoS Comp Biol 3: e171. doi: 10.1371/journal.pcbi.0030171
-
(2007)
PLoS Comp Biol
, vol.3
, pp. e171
-
-
Yu, Y.1
Wang, G.2
Simha, R.3
Peng, W.4
Turano, F.5
Zeng, C.6
-
32
-
-
57149102486
-
Systems biology of vascular endothelial growth factors
-
Gabhann FM, Popel AS, (2008). Systems biology of vascular endothelial growth factors. Microcirculation 15: 715–738. doi: 10.1080/10739680802095964
-
(2008)
Microcirculation
, vol.15
, pp. 715-738
-
-
Gabhann, F.M.1
Popel, A.S.2
-
33
-
-
28444488632
-
Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model
-
Karagiannis ED, Popel AS, (2006). Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol 238: 124–145. doi: 10.1016/j.jtbi.2005.05.020 16005020
-
(2006)
J Theor Biol
, vol.238
, pp. 124-145
-
-
Karagiannis, E.D.1
Popel, A.S.2
-
34
-
-
77955636443
-
Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model
-
Vempati P, Mac Gabhann F, Popel AS, (2010). Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS ONE 5: e11860. doi: 10.1371/journal.pone.0011860 20686621
-
(2010)
PLoS ONE
, vol.5
, pp. e11860
-
-
Vempati, P.1
Mac Gabhann, F.2
Popel, A.S.3
-
35
-
-
79955380395
-
Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis
-
Vempati P, Popel AS, Mac Gabhann F, (2011). Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Sys Biol 5: 59. doi: 10.1186/1752-0509-5-59
-
(2011)
BMC Sys Biol
, vol.5
, pp. 59
-
-
Vempati, P.1
Popel, A.S.2
Mac Gabhann, F.3
-
36
-
-
84891090406
-
Compartment model predicts VEGF secretion and investigates the effects of VEGF Trap in tumor-bearing mice
-
Finley SD, Dhar M, Popel AS, (2013). Compartment model predicts VEGF secretion and investigates the effects of VEGF Trap in tumor-bearing mice. Front Oncol 3: 196. doi: 10.3389/fonc.2013.00196 23908970
-
(2013)
Front Oncol
, vol.3
, pp. 196
-
-
Finley, S.D.1
Dhar, M.2
Popel, A.S.3
-
37
-
-
0002670122
-
A mathematical model of vascular tumour growth and invasion
-
Orme ME, Chaplain MAJ, (1996). A mathematical model of vascular tumour growth and invasion. Math Comp Model 23: 43–60. doi: 10.1016/0895-7177(96)00053-2
-
(1996)
Math Comp Model
, vol.23
, pp. 43-60
-
-
Orme, M.E.1
Chaplain, M.A.J.2
-
38
-
-
0031230846
-
Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies
-
Orme ME, Chaplain MAJ, (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. Math Med Biol 14: 189–205. doi: 10.1093/imammb/14.3.189
-
(1997)
Math Med Biol
, vol.14
, pp. 189-205
-
-
Orme, M.E.1
Chaplain, M.A.J.2
-
39
-
-
0035287283
-
Mathematical modeling of the onset of capillary formation initiating angiogenesis
-
Levine HA, Sleeman BD, Nilsen-Hamilton M, (2001). Mathematical modeling of the onset of capillary formation initiating angiogenesis. J Math Biol 42: 195–238. doi: 10.1007/s002850000037 11315313
-
(2001)
J Math Biol
, vol.42
, pp. 195-238
-
-
Levine, H.A.1
Sleeman, B.D.2
Nilsen-Hamilton, M.3
-
40
-
-
0034845581
-
Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma
-
Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M, (2001). Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63: 801–863. doi: 10.1006/bulm.2001.0240 11565406
-
(2001)
Bull Math Biol
, vol.63
, pp. 801-863
-
-
Levine, H.A.1
Pamuk, S.2
Sleeman, B.D.3
Nilsen-Hamilton, M.4
-
41
-
-
0033731143
-
A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis
-
Levine HA, Sleeman BD, Nilsen-Hamilton M, (2000). A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. Math Biosci 168: 77–115. doi: 10.1016/S0025-5564(00)00034-1 11121821
-
(2000)
Math Biosci
, vol.168
, pp. 77-115
-
-
Levine, H.A.1
Sleeman, B.D.2
Nilsen-Hamilton, M.3
-
42
-
-
3042713269
-
A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins
-
Plank MJ, Sleeman BD, Jones PF, (2004). A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol 229: 435–454. doi: 10.1016/j.jtbi.2004.04.012 15246783
-
(2004)
J Theor Biol
, vol.229
, pp. 435-454
-
-
Plank, M.J.1
Sleeman, B.D.2
Jones, P.F.3
-
43
-
-
0025991093
-
Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis
-
Stokes CL, Lauffenburger DA, (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152: 377–403. doi: 10.1016/S0022-5193(05)80201-2 1721100
-
(1991)
J Theor Biol
, vol.152
, pp. 377-403
-
-
Stokes, C.L.1
Lauffenburger, D.A.2
-
44
-
-
0032170064
-
Continuous and discrete mathematical models of tumor-induced angiogenesis
-
Anderson ARA, Chaplain MAJ, (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60: 857–899. doi: 10.1006/bulm.1998.0042 9739618
-
(1998)
Bull Math Biol
, vol.60
, pp. 857-899
-
-
Anderson, A.R.A.1
Chaplain, M.A.J.2
-
45
-
-
0036664608
-
Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies
-
McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA, (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64: 673–702. doi: 10.1006/bulm.2002.0293 12216417
-
(2002)
Bull Math Biol
, vol.64
, pp. 673-702
-
-
McDougall, S.R.1
Anderson, A.R.A.2
Chaplain, M.A.J.3
Sherratt, J.A.4
-
46
-
-
33748175047
-
Mathematical modeling of tumor-induced angiogenesis
-
Chaplain MAJ, McDougall SR, Anderson ARA, (2006). Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8: 233–257. doi: 10.1146/annurev.bioeng.8.061505.095807 16834556
-
(2006)
Annu Rev Biomed Eng
, vol.8
, pp. 233-257
-
-
Chaplain, M.A.J.1
McDougall, S.R.2
Anderson, A.R.A.3
-
47
-
-
58349120594
-
Multiscale modelling and nonlinear simulation of vascular tumour growth
-
Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub J, (2009). Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58: 765–798. doi: 10.1007/s00285-008-0216-9 18781303
-
(2009)
J Math Biol
, vol.58
, pp. 765-798
-
-
Macklin, P.1
McDougall, S.2
Anderson, A.R.A.3
Chaplain, M.A.J.4
Cristini, V.5
Lowengrub, J.6
-
48
-
-
79955030886
-
Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions
-
Perfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, Lapin A, et al (2011). Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PloS ONE 6: e14790. doi: 10.1371/journal.pone.0014790 21533234
-
(2011)
PloS ONE
, vol.6
, pp. e14790
-
-
Perfahl, H.1
Byrne, H.M.2
Chen, T.3
Estrella, V.4
Alarcón, T.5
Lapin, A.6
-
49
-
-
84866463851
-
A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature
-
McDougall SR, Watson MG, Devlin AH, Mitchell CA, Chaplain MAJ, (2012). A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature. Bull Math Biol 74: 2272–2314. doi: 10.1007/s11538-012-9754-9 22829182
-
(2012)
Bull Math Biol
, vol.74
, pp. 2272-2314
-
-
McDougall, S.R.1
Watson, M.G.2
Devlin, A.H.3
Mitchell, C.A.4
Chaplain, M.A.J.5
-
50
-
-
34247569970
-
A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis
-
Bauer AL, Jackson TL, Jiang Y, (2007). A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92: 3105–3121. doi: 10.1529/biophysj.106.101501 17277180
-
(2007)
Biophys J
, vol.92
, pp. 3105-3121
-
-
Bauer, A.L.1
Jackson, T.L.2
Jiang, Y.3
-
51
-
-
52949146011
-
Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth
-
Merks RM, Perryn ED, Shirinifard A, Glazier JA, (2008). Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comp Biol 4: e1000163. doi: 10.1371/journal.pcbi.1000163
-
(2008)
PLoS Comp Biol
, vol.4
, pp. e1000163
-
-
Merks, R.M.1
Perryn, E.D.2
Shirinifard, A.3
Glazier, J.A.4
-
52
-
-
36348997609
-
Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation
-
Bentley K, Gerhardt H, Bates PA, (2008). Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol 250: 25–36. doi: 10.1016/j.jtbi.2007.09.015 18028963
-
(2008)
J Theor Biol
, vol.250
, pp. 25-36
-
-
Bentley, K.1
Gerhardt, H.2
Bates, P.A.3
-
53
-
-
70449397345
-
3D multi-cell simulation of tumor growth and angiogenesis
-
Shirinifard A, Gens JS, Zaitlen BL, Poplawski NJ, Swat M, Glazier JA, (2009). 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4: e7190. doi: 10.1371/journal.pone.0007190 19834621
-
(2009)
PLoS ONE
, vol.4
, pp. e7190
-
-
Shirinifard, A.1
Gens, J.S.2
Zaitlen, B.L.3
Poplawski, N.J.4
Swat, M.5
Glazier, J.A.6
-
54
-
-
55949094110
-
A hybrid model for three-dimensional simulations of sprouting angiogenesis
-
Milde F, Bergdorf M, Koumoutsakos P, (2008). A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95: 3146–3160. doi: 10.1529/biophysj.107.124511 18586846
-
(2008)
Biophys J
, vol.95
, pp. 3146-3160
-
-
Milde, F.1
Bergdorf, M.2
Koumoutsakos, P.3
-
55
-
-
84898602268
-
Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis
-
Vilanova G, Colominas I, Gomez H, (2014). Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis. Comp Mech 53: 449–464. doi: 10.1007/s00466-013-0958-0
-
(2014)
Comp Mech
, vol.53
, pp. 449-464
-
-
Vilanova, G.1
Colominas, I.2
Gomez, H.3
-
56
-
-
16644400591
-
Mathematical modeling of tumor-induced angiogenesis
-
Mantzaris N, Webb S, Othmer H, (2004). Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49: 111–187. doi: 10.1007/s00285-003-0262-2 15293017
-
(2004)
J Math Biol
, vol.49
, pp. 111-187
-
-
Mantzaris, N.1
Webb, S.2
Othmer, H.3
-
57
-
-
84923882819
-
Mesoscopic and continuum modelling of angiogenesis
-
Spill F, Guerrero P, Alarcón T, Maini PK, Byrne HM, (2014). Mesoscopic and continuum modelling of angiogenesis. J Math Biol 70: 485–532. doi: 10.1007/s00285-014-0771-1 24615007
-
(2014)
J Math Biol
, vol.70
, pp. 485-532
-
-
Spill, F.1
Guerrero, P.2
Alarcón, T.3
Maini, P.K.4
Byrne, H.M.5
-
59
-
-
84922940990
-
Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis
-
Heck T, Vaeyens MM, Van Oosterwyck H, (2015). Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis. Math Model Nat Phen 10: 108–141. doi: 10.1051/mmnp/201510106
-
(2015)
Math Model Nat Phen
, vol.10
, pp. 108-141
-
-
Heck, T.1
Vaeyens, M.M.2
Van Oosterwyck, H.3
-
60
-
-
73549120589
-
Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis
-
Bentley K, Mariggi G, Gerhardt H, Bates PA, (2009). Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comp Biol 5: e1000549. doi: 10.1371/journal.pcbi.1000549
-
(2009)
PLoS Comp Biol
, vol.5
, pp. e1000549
-
-
Bentley, K.1
Mariggi, G.2
Gerhardt, H.3
Bates, P.A.4
-
61
-
-
84922926839
-
Mechanical Cell-Matrix Feedback Explains Pairwise and Collective Endothelial Cell Behavior In Vitro
-
van Oers RFM, Rens EG, LaValley DJ, Reinhart-King CA, Merks RMH, (2014). Mechanical Cell-Matrix Feedback Explains Pairwise and Collective Endothelial Cell Behavior In Vitro. PLoS Comp Biol 10: e1003774. doi: 10.1371/journal.pcbi.1003774
-
(2014)
PLoS Comp Biol
, vol.10
, pp. e1003774
-
-
van Oers, R.F.M.1
Rens, E.G.2
LaValley, D.J.3
Reinhart-King, C.A.4
Merks, R.M.H.5
-
62
-
-
77957607057
-
Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
-
Jakobsson L, Franco C, Bentley K, Collins R, Ponsioen B, et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10): 943–953. doi: 10.1038/ncb2103 20871601
-
(2010)
Nat Cell Biol
, vol.12
, Issue.10
, pp. 943-953
-
-
Jakobsson, L.1
Franco, C.2
Bentley, K.3
Collins, R.4
Ponsioen, B.5
-
63
-
-
84891743533
-
A viscoelastic model of blood capillary extension and regression: derivation, analysis, and simulation
-
Zheng X, Xie C, (2014). A viscoelastic model of blood capillary extension and regression: derivation, analysis, and simulation. J Math Biol 68: 57–80. doi: 10.1007/s00285-012-0624-8 23149501
-
(2014)
J Math Biol
, vol.68
, pp. 57-80
-
-
Zheng, X.1
Xie, C.2
-
64
-
-
80053980982
-
Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement
-
Arima S, Nishiyama K, Ko T, Arima Y, Hakozaki Y, Sugihara K, et al (2011). Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138: 4763–4776. doi: 10.1242/dev.068023 21965612
-
(2011)
Development
, vol.138
, pp. 4763-4776
-
-
Arima, S.1
Nishiyama, K.2
Ko, T.3
Arima, Y.4
Hakozaki, Y.5
Sugihara, K.6
-
65
-
-
42549098645
-
Advances of and by phase field modeling in condensed-matter physics
-
Emmerich H, (2008). Advances of and by phase field modeling in condensed-matter physics. Adv Phys 57: 1. doi: 10.1080/00018730701822522
-
(2008)
Adv Phys
, vol.57
, pp. 1
-
-
Emmerich, H.1
-
66
-
-
84907049389
-
Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity
-
Lázaro GR, Hernández-Machado A, Pagonabarraga I, (2014). Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity. Soft Matter 10: 7195–7206. doi: 10.1039/C4SM00894D 25105872
-
(2014)
Soft Matter
, vol.10
, pp. 7195-7206
-
-
Lázaro, G.R.1
Hernández-Machado, A.2
Pagonabarraga, I.3
-
67
-
-
84859940335
-
Study on multicellular systems using a phase field model
-
Nonomura M, (2012). Study on multicellular systems using a phase field model. PloS ONE 7: e33501. doi: 10.1371/journal.pone.0033501 22539943
-
(2012)
PloS ONE
, vol.7
, pp. e33501
-
-
Nonomura, M.1
-
68
-
-
84907938530
-
Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns
-
Camley BA, Zhang Y, Zhao Y, Li B, Ben-Jacob E, Levine H, Rappel WJ, (2014). Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns. Proc Natl Acad Sci USA 111: 14770–14775. doi: 10.1073/pnas.1414498111 25258412
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 14770-14775
-
-
Camley, B.A.1
Zhang, Y.2
Zhao, Y.3
Li, B.4
Ben-Jacob, E.5
Levine, H.6
Rappel, W.J.7
-
70
-
-
84874736686
-
A continuous model of angiogenesis: initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes
-
Zheng X, Koh GY, Jackson T, (2013). A continuous model of angiogenesis: initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. Disc Cont Dyn Syst Ser B 18: 1109–1154. doi: 10.3934/dcdsb.2013.18.1109
-
(2013)
Disc Cont Dyn Syst Ser B
, vol.18
, pp. 1109-1154
-
-
Zheng, X.1
Koh, G.Y.2
Jackson, T.3
-
71
-
-
84891381516
-
Dynamics of VEGF matrix-retention in vascular network patterning
-
Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero MA, Miura T, (2013). Dynamics of VEGF matrix-retention in vascular network patterning. Phys Biol 10: 066007. doi: 10.1088/1478-3975/10/6/066007 24305433
-
(2013)
Phys Biol
, vol.10
, pp. 066007
-
-
Köhn-Luque, A.1
de Back, W.2
Yamaguchi, Y.3
Yoshimura, K.4
Herrero, M.A.5
Miura, T.6
-
74
-
-
0038707782
-
-
Landau LD, Lifchits EM, Kosevitch AM, Pitaevski LP, Kosevitch A. M., Pitaevski L. P., (1986). Course of theoretical physics: theory of elasticity (p. 4). (Eds.). Butterworth-Heinemann.
-
(1986)
Course of theoretical physics: theory of elasticity
, pp. 4
-
-
Landau, L.D.1
Lifchits, E.M.2
Kosevitch, A.M.3
Pitaevski, L.P.4
Kosevitch, A.M.5
Pitaevski, L.P.6
-
75
-
-
40649097554
-
Wound angiogenesis as a function of tissue oxygen tension: A mathematical model
-
Schugart RC, Friedman A, Zhao R, Sen CK, (2008). Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. Proc Natl Acad Sci USA 105: 2628–2633. doi: 10.1073/pnas.0711642105 18272493
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 2628-2633
-
-
Schugart, R.C.1
Friedman, A.2
Zhao, R.3
Sen, C.K.4
-
76
-
-
2542467721
-
Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA
-
Nelson CM, Pirone DM, Tan JL, Chen CS, (2004). Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol Biol Cell 15: 2943–2953. doi: 10.1091/mbc.E03-10-0745 15075376
-
(2004)
Mol Biol Cell
, vol.15
, pp. 2943-2953
-
-
Nelson, C.M.1
Pirone, D.M.2
Tan, J.L.3
Chen, C.S.4
-
77
-
-
77955475970
-
Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation
-
Liu J, Agarwal S, (2010). Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation. Journal Immun 185: 1215–1221. doi: 10.4049/jimmunol.0903660
-
(2010)
Journal Immun
, vol.185
, pp. 1215-1221
-
-
Liu, J.1
Agarwal, S.2
-
78
-
-
79953148385
-
Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling
-
Provenzano PP, Keely PJ, (2011). Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124: 1195–1205. doi: 10.1242/jcs.067009 21444750
-
(2011)
J Cell Sci
, vol.124
, pp. 1195-1205
-
-
Provenzano, P.P.1
Keely, P.J.2
-
79
-
-
77958093432
-
Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy
-
Raub CB, Putnam AJ, Tromberg BJ, George SC, (2010). Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater 6: 4657–4665. doi: 10.1016/j.actbio.2010.07.004 20620246
-
(2010)
Acta Biomater
, vol.6
, pp. 4657-4665
-
-
Raub, C.B.1
Putnam, A.J.2
Tromberg, B.J.3
George, S.C.4
-
80
-
-
79960924956
-
Atomic force microscopy: a nanoscopic window on the cell surface
-
Muller DJ, Dufrêne YF, (2011). Atomic force microscopy: a nanoscopic window on the cell surface. Trend Cell Biol 21: 461–469. doi: 10.1016/j.tcb.2011.04.008
-
(2011)
Trend Cell Biol
, vol.21
, pp. 461-469
-
-
Muller, D.J.1
Dufrêne, Y.F.2
-
81
-
-
84862572303
-
Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle
-
McCain ML, Lee H, Aratyn-Schaus Y, Kléber AG, Parker KK, (2012). Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. Proc Natl Acad Sci USA 109: 9881–9886. doi: 10.1073/pnas.1203007109 22675119
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 9881-9886
-
-
McCain, M.L.1
Lee, H.2
Aratyn-Schaus, Y.3
Kléber, A.G.4
Parker, K.K.5
-
82
-
-
0032243755
-
Modeling the dynamics of amphiphilic fluids
-
Lamura A, Gonnella G, Yeomans JM, (1998). Modeling the dynamics of amphiphilic fluids. Int J Mod Phys C 9: 1469–1478. doi: 10.1142/S0129183198001333
-
(1998)
Int J Mod Phys C
, vol.9
, pp. 1469-1478
-
-
Lamura, A.1
Gonnella, G.2
Yeomans, J.M.3
-
83
-
-
5444228795
-
Effect of hydrodynamic interactions on the evolution of chemically reactive ternary mixtures
-
Good K, Kuksenok O, Buxton GA, Ginzburg VV, Balazs AC, (2004). Effect of hydrodynamic interactions on the evolution of chemically reactive ternary mixtures. J Chem Phys 121: 6052–6063. doi: 10.1063/1.1783872 15367034
-
(2004)
J Chem Phys
, vol.121
, pp. 6052-6063
-
-
Good, K.1
Kuksenok, O.2
Buxton, G.A.3
Ginzburg, V.V.4
Balazs, A.C.5
-
84
-
-
84874713356
-
An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix
-
D’Antonio G, Macklin P, Preziosi L, (2012). An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Math Biosci Eng 10: 75–101. doi: 10.3934/mbe.2013.10.75
-
(2012)
Math Biosci Eng
, vol.10
, pp. 75-101
-
-
D’Antonio, G.1
Macklin, P.2
Preziosi, L.3
-
85
-
-
84881110925
-
Interstitial fluid flow and drug delivery in vascularized tumors: a computational model
-
Welter M, Rieger H, (2013). Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PloS ONE 8: e70395. doi: 10.1371/journal.pone.0070395 23940570
-
(2013)
PloS ONE
, vol.8
, pp. e70395
-
-
Welter, M.1
Rieger, H.2
|