메뉴 건너뛰기




Volumn 69, Issue 3, 2015, Pages 201-212

A Statistical Framework for Hypothesis Testing in Real Data Comparison Studies

Author keywords

Benchmarking; Comparison; Performance; Supervised learning; Testing

Indexed keywords


EID: 84940653205     PISSN: 00031305     EISSN: 15372731     Source Type: Journal    
DOI: 10.1080/00031305.2015.1005128     Document Type: Article
Times cited : (32)

References (38)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays
    • U.Alon,, N.Barkai,, D.A.Notterman,, K.Gish,, S.Ybarra,, D.Mack,, and A.J.Levine, (1999), “Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays,” Proceedings of the National Academy of Sciences, 96, 6745–6750.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 4
    • 84885639290 scopus 로고    scopus 로고
    • On Representative and Illustrative Comparisons With Real Data in Bioinformatics: Response to the Letter to the Editor by Smith et al
    • A.-L.Boulesteix, (2013), “On Representative and Illustrative Comparisons With Real Data in Bioinformatics: Response to the Letter to the Editor by Smith et al. Bioinformatics, 29, 2664–2666.
    • (2013) Bioinformatics , vol.29 , pp. 2664-2666
    • Boulesteix, A.-L.1
  • 5
    • 84876567454 scopus 로고    scopus 로고
    • A Plea for Neutral Comparison Studies in Computational Sciences
    • A.L.Boulesteix,, S.Lauer,, and M.J.E.Eugster, (2013), “A Plea for Neutral Comparison Studies in Computational Sciences,” PLoS One, 8, e61562.
    • (2013) PLoS One , vol.8 , pp. e61562
    • Boulesteix, A.L.1    Lauer, S.2    Eugster, M.J.E.3
  • 7
    • 24044535745 scopus 로고    scopus 로고
    • Exact Performance of Error Estimators for Discrete Classifiers
    • U.Braga-Neto,, and E.Dougherty, (2005), “Exact Performance of Error Estimators for Discrete Classifiers,” Pattern Recognition, 38, 1799–1814.
    • (2005) Pattern Recognition , vol.38 , pp. 1799-1814
    • Braga-Neto, U.1    Dougherty, E.2
  • 8
    • 84859974404 scopus 로고    scopus 로고
    • Exact Sample Conditioned MSE Performance of the Bayesian MMSE Estimator for Classification Error—Part I: Representation
    • L.Dalton,, and E.Dougherty, (2012a), “Exact Sample Conditioned MSE Performance of the Bayesian MMSE Estimator for Classification Error—Part I: Representation,” IEEE Transactions on Signal Processing, 60, 2575–2587.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , pp. 2575-2587
    • Dalton, L.1    Dougherty, E.2
  • 9
    • 84859950916 scopus 로고    scopus 로고
    • Exact Sample Conditioned MSE Performance of the Bayesian MMSE Estimator for Classification Error—Part II: Consistency and Performance Analysis
    • L.Dalton, (2012b), “Exact Sample Conditioned MSE Performance of the Bayesian MMSE Estimator for Classification Error—Part II: Consistency and Performance Analysis,” IEEE Transactions on Signal Processing, 60, 2588–2603.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , pp. 2588-2603
    • Dalton, L.1
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical Comparisons of Classifiers Over Multiple Data Sets
    • J.Demšar, (2006), “Statistical Comparisons of Classifiers Over Multiple Data Sets,” Journal of Machine Learning Research, 7, 1–30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene Selection and Classification of Microarray Data Using Random Forest
    • R.Díaz-Uriarte,, and S.A.De Andres, (2006), “Gene Selection and Classification of Microarray Data Using Random Forest,” BMC Bioinformatics, 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    De Andres, S.A.2
  • 13
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • T.Dietterich, (1998), “Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms,” Neural Computation, 10, 1895–1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.1
  • 14
    • 79961007365 scopus 로고    scopus 로고
    • The Illusion of Distribution-Free Small-Sample Classification in Genomics
    • E.Dougherty,, A.Zollanvari,, and U.Braga-Neto, (2011), “The Illusion of Distribution-Free Small-Sample Classification in Genomics,” Current Genomics, 12, 333–341.
    • (2011) Current Genomics , vol.12 , pp. 333-341
    • Dougherty, E.1    Zollanvari, A.2    Braga-Neto, U.3
  • 15
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data
    • S.Dudoit,, J.Fridlyand,, and T.P.Speed, (2002), “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data,” Journal of the American Statistical Association, 97, 77–87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 17
    • 84876538871 scopus 로고    scopus 로고
    • Domain-Based Benchmark Experiments: Exploratory and Inferential Analysis
    • M.Eugster,, T.Hothorn,, and F.Leisch, (2012), “Domain-Based Benchmark Experiments: Exploratory and Inferential Analysis,” Austrian Journal of Statistics, 41, 5–26.
    • (2012) Austrian Journal of Statistics , vol.41 , pp. 5-26
    • Eugster, M.1    Hothorn, T.2    Leisch, F.3
  • 18
    • 84889089766 scopus 로고    scopus 로고
    • (Psycho-) Analysis of Benchmark Experiments: A Formal Framework for Investigating the Relationship Between Data Sets and Learning Algorithms
    • M.J.Eugster,, F.Leisch,, and C.Strobl, (2014), “(Psycho-) Analysis of Benchmark Experiments: A Formal Framework for Investigating the Relationship Between Data Sets and Learning Algorithms,” Computational Statistics & Data Analysis, 71, 986–1000.
    • (2014) Computational Statistics & Data Analysis , vol.71 , pp. 986-1000
    • Eugster, M.J.1    Leisch, F.2    Strobl, C.3
  • 19
    • 77549084648 scopus 로고    scopus 로고
    • Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power
    • S.Garcia,, A.Fernandez,, J.Luengo,, and F.Herrera, (2010), “Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power,” Information Sciences, 180, 2044–2064.
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 20
    • 58149287952 scopus 로고    scopus 로고
    • An Extension on Statistical Comparisons of Classifiers Over Multiple Data Sets for All Pairwise Comparisons
    • S.Garcia,, and F.Herrera, (2008), “An Extension on Statistical Comparisons of Classifiers Over Multiple Data Sets for All Pairwise Comparisons,” Journal of Machine Learning Research, 9, 2677–2694.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 21
    • 0033569406 scopus 로고    scopus 로고
    • Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
    • T.Golub,, D.Slonim,, P.Tamayo,, C.Huard,, M.Gaasenbeek,, J.Mesirov,, H.Coller,, M.Loh,, J.Downing,, and M.Caligiuri,, Bloomfield, C. D., Lander, E. S. (1999), “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring,” Science, 286, 531–537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.6    Coller, H.7    Loh, M.8    Downing, J.9    Caligiuri, M.10
  • 22
    • 77950171443 scopus 로고    scopus 로고
    • On the Comparison of Classifiers for Microarray Data
    • B.Hanczar,, and E.Dougherty, (2010), “On the Comparison of Classifiers for Microarray Data,” Current Bioinformatics, 5, 29–39.
    • (2010) Current Bioinformatics , vol.5 , pp. 29-39
    • Hanczar, B.1    Dougherty, E.2
  • 23
    • 33745886270 scopus 로고    scopus 로고
    • Classifier Technology and the Illusion of Progress
    • D.J.Hand, (2006), “Classifier Technology and the Illusion of Progress,” Statistical Science, 21, 1–14.
    • (2006) Statistical Science , vol.21 , pp. 1-14
    • Hand, D.J.1
  • 25
    • 0001180607 scopus 로고
    • Distinguishability of Sets of Distributions. (The Case of Independent and Identically Distributed Chance Variables)
    • W.Hoeffding,, and J.Wolfowitz, (1958), “Distinguishability of Sets of Distributions. (The Case of Independent and Identically Distributed Chance Variables),” Annals of Mathematical Statistics, 29, 700–718.
    • (1958) Annals of Mathematical Statistics , vol.29 , pp. 700-718
    • Hoeffding, W.1    Wolfowitz, J.2
  • 28
    • 33748961513 scopus 로고    scopus 로고
    • A Comparison of Univariate and Multivariate Gene Selection Techniques for Classification of Cancer Datasets
    • C.Lai,, M.Reinders,, L.Van’t Veer,, and L.Wessels, (2006), “A Comparison of Univariate and Multivariate Gene Selection Techniques for Classification of Cancer Datasets,” BMC Bioinformatics, 7, 235.
    • (2006) BMC Bioinformatics , vol.7 , pp. 235
    • Lai, C.1    Reinders, M.2    Van’t Veer, L.3    Wessels, L.4
  • 29
    • 10444280144 scopus 로고    scopus 로고
    • An Extensive Comparison of Recent Classification Tools Applied to Microarray Data
    • J.Lee,, J.Lee,, M.Park,, and S.Song, (2005), “An Extensive Comparison of Recent Classification Tools Applied to Microarray Data,” Computational Statistics & Data Analysis, 48, 869–885.
    • (2005) Computational Statistics & Data Analysis , vol.48 , pp. 869-885
    • Lee, J.1    Lee, J.2    Park, M.3    Song, S.4
  • 30
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the Generalization Error
    • C.Nadeau,, and Y.Bengio, (2003), “Inference for the Generalization Error,” Machine Learning, 52, 239–281.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 32
    • 60849119837 scopus 로고    scopus 로고
    • CMA—A Comprehensive Bioconductor Package for Supervised Classification With High Dimensional Data
    • M.Slawski,, M.Daumer,, and A.L.Boulesteix, (2008), “CMA—A Comprehensive Bioconductor Package for Supervised Classification With High Dimensional Data,” BMC Bioinformatics, 9, 439.
    • (2008) BMC Bioinformatics , vol.9 , pp. 439
    • Slawski, M.1    Daumer, M.2    Boulesteix, A.L.3
  • 33
    • 15844413351 scopus 로고    scopus 로고
    • A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis
    • A.Statnikov,, C.Aliferis,, I.Tsamardinos,, D.Hardin,, and S.Levy, (2005), “A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis,” Bioinformatics, 21, 631–643.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 34
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A Technique for Combining Boosting and Wagging
    • G.Webb, (2000), “Multiboosting: A Technique for Combining Boosting and Wagging,” Machine Learning, 40, 159–196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.1
  • 36
    • 75249095400 scopus 로고    scopus 로고
    • Reporting Bias When Using Real Data Sets to Analyze Classification Performance
    • M.Yousefi,, J.Hua,, C.Sima,, and E.Dougherty, (2010), “Reporting Bias When Using Real Data Sets to Analyze Classification Performance,” Bioinformatics, 26, 68–76.
    • (2010) Bioinformatics , vol.26 , pp. 68-76
    • Yousefi, M.1    Hua, J.2    Sima, C.3    Dougherty, E.4
  • 37
    • 67649390743 scopus 로고    scopus 로고
    • On the Sampling Distribution of Resubstitution and Leave-One-Out Error Estimators for Linear Classifiers
    • A.Zollanvari,, U.Braga-Neto,, and E.Dougherty, (2009), “On the Sampling Distribution of Resubstitution and Leave-One-Out Error Estimators for Linear Classifiers,” Pattern Recognition, 42, 2705–2723.
    • (2009) Pattern Recognition , vol.42 , pp. 2705-2723
    • Zollanvari, A.1    Braga-Neto, U.2    Dougherty, E.3
  • 38
    • 79960987402 scopus 로고    scopus 로고
    • Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis
    • A.Zollanvari,, U.Braga-Neto,, and E.Dougherty, (2011), “Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis,” IEEE Transactions on Signal Processing, 59, 4238–4255.
    • (2011) IEEE Transactions on Signal Processing , vol.59 , pp. 4238-4255
    • Zollanvari, A.1    Braga-Neto, U.2    Dougherty, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.