메뉴 건너뛰기




Volumn 5, Issue 1, 2010, Pages 29-39

On the comparison of classifiers for microarray data

Author keywords

Classifier comparison; Error estimation; Microarray classification; Variance study

Indexed keywords

ANALYSIS OF VARIANCE; ANALYTICAL ERROR; BINOMIAL DISTRIBUTION; BIOINFORMATICS; GENE REGULATORY NETWORK; MATHEMATICAL COMPUTING; MICROARRAY ANALYSIS; PRIORITY JOURNAL; REVIEW;

EID: 77950171443     PISSN: 15748936     EISSN: None     Source Type: Journal    
DOI: 10.2174/157489310790596376     Document Type: Review
Times cited : (16)

References (26)
  • 2
    • 0037137519 scopus 로고    scopus 로고
    • A gene-expression signature as a predictor of survival in breast cancer
    • Van de Vijver MJ, He YD, Van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. New Eng J Med 2002; 347: 1999-2009.
    • (2002) New Eng J Med , vol.347 , pp. 1999-2009
    • Van de Vijver, M.J.1    He, Y.D.2    Van't Veer, L.J.3
  • 3
    • 22344438942 scopus 로고    scopus 로고
    • Gene expression profiles in prostate cancer: Association with patient subgroups and tumour di® erentiation
    • Halvorsen OJ. Gene expression profiles in prostate cancer: association with patient subgroups and tumour di® erentiation. Int J Oncol 2005; 26: 329-36.
    • (2005) Int J Oncol , vol.26 , pp. 329-336
    • Halvorsen, O.J.1
  • 4
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed P. Comparison of discrimination methods for classification of tumors using gene expression data. J Am Stat Assoc 2002; 97: 77-87.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, P.3
  • 5
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J, Wei Jun SJ, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Natl Med 2001; 7: 673-79.
    • (2001) Natl Med , vol.7 , pp. 673-679
    • Khan, J.1    Wei Jun, S.J.2    Ringnér, M.3
  • 6
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005; 21: 631-43.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 7
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006; 7: 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez de Andres, S.2
  • 8
    • 50349090268 scopus 로고    scopus 로고
    • Crossvalidation and bootstrapping are unreliable in small sample classification
    • Isaksson A, Wallman M, GÄoransson H, Gustafsson MG. Crossvalidation and bootstrapping are unreliable in small sample classification. Pattern Recognit Lett 2008; 29: 1960-1965.
    • (2008) Pattern Recognit Lett , vol.29 , pp. 1960-1965
    • Isaksson, A.1    Wallman, M.2    GÄoransson, H.3    Gustafsson, M.G.4
  • 9
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for smallsample microarray classification
    • Braga-Neto UM, Dougherty ER. Is cross-validation valid for smallsample microarray classification. Bioinformatics 2004; 20: 374-80.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 10
    • 34447331698 scopus 로고    scopus 로고
    • Classification based upon gene expression data: Bias and precision of error rates
    • Wood I, Visscher P, Mengersen K. Classification based upon gene expression data: bias and precision of error rates. Bioinformatics 2007; 11: 1363-70.
    • (2007) Bioinformatics , vol.11 , pp. 1363-1370
    • Wood, I.1    Visscher, P.2    Mengersen, K.3
  • 11
    • 37649015028 scopus 로고    scopus 로고
    • Decorrelation of the true and estimated classifier errors in high-dimensional settings
    • Hanczar B, Hua J, Dougherty ER. Decorrelation of the true and estimated classifier errors in high-dimensional settings. EURASIP J Bioinform Systs Biol 2007; 38473.
    • (2007) EURASIP J Bioinform Systs Biol , pp. 38473
    • Hanczar, B.1    Hua, J.2    Dougherty, E.R.3
  • 12
    • 48249114165 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Boulesteix AL, Strobl C, Augustin T, Daumer M. An extensive comparison of recent classification tools applied to microarray data. Cancer Inform 2008; 6: 77-97.
    • (2008) Cancer Inform , vol.6 , pp. 77-97
    • Boulesteix, A.L.1    Strobl, C.2    Augustin, T.3    Daumer, M.4
  • 13
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics 2005; 21: 3201-3212.
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 14
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'haeseleer P, Liang S, Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000; 16: 707-26.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 15
    • 0033707946 scopus 로고    scopus 로고
    • Using bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using bayesian networks to analyze expression data. J Comp Biol 2000; 7: 601-20.
    • (2000) J Comp Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 16
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002; 18: 261-74.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 17
    • 0032728081 scopus 로고    scopus 로고
    • Clustering gene expression patterns
    • Ben-Dor A, Shamir R, Yakhini Z. Clustering gene expression patterns. J Comp Biol 1999; 6: 281-97.
    • (1999) J Comp Biol , vol.6 , pp. 281-297
    • Ben-Dor, A.1    Shamir, R.2    Yakhini, Z.3
  • 18
    • 0036207548 scopus 로고    scopus 로고
    • Inference from clustering with application to gene-expression microarrays
    • Dougherty ER, Barrera J, Brun M, et al. Inference from clustering with application to gene-expression microarrays. J Comp Biol 2002; 9: 105-26.
    • (2002) J Comp Biol , vol.9 , pp. 105-126
    • Dougherty, E.R.1    Barrera, J.2    Brun, M.3
  • 20
    • 0000259511 scopus 로고    scopus 로고
    • Dietterich TG. Approximate statistical test for comparing supervised classification learning algorithms. Neura\l Comp 1998; 10: 1895-923.
    • Dietterich TG. Approximate statistical test for comparing supervised classification learning algorithms. Neura\l Comp 1998; 10: 1895-923.
  • 21
    • 0004211265 scopus 로고    scopus 로고
    • Small sample statistics for classification error rates II: Confidence intervals and significance tests
    • Technical Report ICS-TR-96-22, University of California: Irvine
    • Martin JK, Hirschberg DS. Small sample statistics for classification error rates II: Confidence intervals and significance tests. Technical Report ICS-TR-96-22, University of California: Irvine 1996.
    • (1996)
    • Martin, J.K.1    Hirschberg, D.S.2
  • 22
    • 33644955890 scopus 로고    scopus 로고
    • Evaluating the replicability of significance tests for comparing learning algorithms
    • Sydney, Australia
    • Bouckaert R, Frank E. Evaluating the replicability of significance tests for comparing learning algorithms. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Sydney, Australia 2005; pp. 3-12.
    • (2005) Pacific-Asia Conference on Knowledge Discovery and Data Mining , pp. 3-12
    • Bouckaert, R.1    Frank, E.2
  • 23
    • 33646856024 scopus 로고    scopus 로고
    • Avoiding model selection bias in small-sample genomic datasets
    • Berrar D, Bradbury I, Dubitzky W. Avoiding model selection bias in small-sample genomic datasets. Bioinformatics 2006; 22: 1245-50.
    • (2006) Bioinformatics , vol.22 , pp. 1245-1250
    • Berrar, D.1    Bradbury, I.2    Dubitzky, W.3
  • 24
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C, Bengio Y. Inference for the generalization error. Mach Learn 2005; 52: 239-81.
    • (2005) Mach Learn , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 25
    • 77950167853 scopus 로고    scopus 로고
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Int Joint Conferences on Artif Intell. San Mateo 1995; pp. 1137-45.
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Int Joint Conferences on Artif Intell. San Mateo 1995; pp. 1137-45.
  • 26
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001; 98: 13790-5.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.