-
1
-
-
0028245444
-
Forward and reverse genetic approaches to behavior in the mouse
-
Takahashi JS, Pinto LH, Vitaterna MH. Forward and reverse genetic approaches to behavior in the mouse. Science 1994; 264: 1724-1733.
-
(1994)
Science
, vol.264
, pp. 1724-1733
-
-
Takahashi, J.S.1
Pinto, L.H.2
Vitaterna, M.H.3
-
2
-
-
80052899933
-
Genetics of circadian rhythms in mammalian model organisms
-
Lowrey PL, Takahashi JS. Genetics of circadian rhythms in mammalian model organisms. Adv Genet 2011; 74: 175-230.
-
(2011)
Adv Genet
, vol.74
, pp. 175-230
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
3
-
-
0028241271
-
Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
-
Vitaterna MH, King DP, Chang AM et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994; 264: 719-725.
-
(1994)
Science
, vol.264
, pp. 719-725
-
-
Vitaterna, M.H.1
King, D.P.2
Chang, A.M.3
-
4
-
-
18844476167
-
Functional identification of the mouse circadian Clock gene by transgenic BAC rescue
-
Antoch MP, Song EJ, Chang AM et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 1997; 89: 655-667.
-
(1997)
Cell
, vol.89
, pp. 655-667
-
-
Antoch, M.P.1
Song, E.J.2
Chang, A.M.3
-
5
-
-
20244377493
-
Positional cloning of the mouse circadian Clock gene
-
King DP, Zhao Y, Sangoram AM et al. Positional cloning of the mouse circadian Clock gene. Cell 1997; 89: 641-653.
-
(1997)
Cell
, vol.89
, pp. 641-653
-
-
King, D.P.1
Zhao, Y.2
Sangoram, A.M.3
-
6
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis N, Staknis D, Nguyen HB et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564-1569.
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
Staknis, D.2
Nguyen, H.B.3
-
7
-
-
0034501106
-
Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation
-
Lowrey PL, Takahashi JS. Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet 2000; 34: 533-562.
-
(2000)
Annu Rev Genet
, vol.34
, pp. 533-562
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
8
-
-
0037178787
-
The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N, Damiola F, Lopez-Molina L et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251-260.
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
Damiola, F.2
Lopez-Molina, L.3
-
9
-
-
34248566788
-
Fbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Fbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007; 316: 900-904.
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
Bassermann, F.2
Maiolica, A.3
-
10
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8: 139-148.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
11
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, Yoo SH, Park J et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007; 129: 1011-1123.
-
(2007)
Cell
, vol.129
, pp. 1011-1123
-
-
Siepka, S.M.1
Yoo, S.H.2
Park, J.3
-
12
-
-
41549142176
-
Setting Clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
-
Meng QJ, Logunova L, Maywood ES et al. Setting Clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008; 58: 78-88.
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.J.1
Logunova, L.2
Maywood, E.S.3
-
13
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo SH, Mohawk JA, Siepka SM et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 2013; 152: 1091-1105.
-
(2013)
Cell
, vol.152
, pp. 1091-1105
-
-
Yoo, S.H.1
Mohawk, J.A.2
Siepka, S.M.3
-
14
-
-
4544362674
-
Mammalian circadian biology: elucidating genome-wide levels of temporal organization
-
Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5: 407-441.
-
(2004)
Annu Rev Genomics Hum Genet
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
15
-
-
11144353910
-
PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo SH, Yamazaki S, Lowrey PL et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 2004; 101: 5339-5346.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
Yamazaki, S.2
Lowrey, P.L.3
-
16
-
-
11144311974
-
Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression
-
Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 2004; 14: 2289-2295.
-
(2004)
Curr Biol
, vol.14
, pp. 2289-2295
-
-
Welsh, D.K.1
Yoo, S.H.2
Liu, A.C.3
Takahashi, J.S.4
Kay, S.A.5
-
17
-
-
8844256589
-
Circadian gene expression in individual fibroblasts; cell-autonomous and self-sustained oscillators pass time to daughter cells
-
Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. Circadian gene expression in individual fibroblasts; cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004; 119: 693-705.
-
(2004)
Cell
, vol.119
, pp. 693-705
-
-
Nagoshi, E.1
Saini, C.2
Bauer, C.3
Laroche, T.4
Naef, F.5
Schibler, U.6
-
18
-
-
33847246765
-
Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior
-
Hong HK, Chong JL, Song W et al. Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior. PLoS Genet 2007; 3: e33.
-
(2007)
PLoS Genet
, vol.3
, pp. e33
-
-
Hong, H.K.1
Chong, J.L.2
Song, W.3
-
19
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 2007; 5: e34.
-
(2007)
PLoS Biol
, vol.5
, pp. e34
-
-
Kornmann, B.1
Schaad, O.2
Bujard, H.3
Takahashi, J.S.4
Schibler, U.5
-
20
-
-
77957960061
-
Temperature as a universal resetting cue for mammalian circadian oscillators
-
Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010; 330: 379-385.
-
(2010)
Science
, vol.330
, pp. 379-385
-
-
Buhr, E.D.1
Yoo, S.H.2
Takahashi, J.S.3
-
21
-
-
84864584460
-
Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue
-
Hughes ME, Hong HK, Chong JL et al. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 2012; 8: e1002835.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002835
-
-
Hughes, M.E.1
Hong, H.K.2
Chong, J.L.3
-
22
-
-
85003265692
-
Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant
-
Izumo M, Pejchal M, Schook AC et al. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife 2014; 3: e04617.
-
(2014)
eLife
, vol.3
, pp. e04617
-
-
Izumo, M.1
Pejchal, M.2
Schook, A.C.3
-
23
-
-
34247516815
-
Intercellular coupling confers robustness against mutations in the SCN circadian clock network
-
Liu AC, Welsh DK, Ko CH et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007; 129: 605-616.
-
(2007)
Cell
, vol.129
, pp. 605-616
-
-
Liu, A.C.1
Welsh, D.K.2
Ko, C.H.3
-
24
-
-
78149369911
-
Emergence of noise-induced oscillations in the central circadian pacemaker
-
Ko CH, Yamada YR, Welsh DK et al. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 2010; 8: e1000513.
-
(2010)
PLoS Biol
, vol.8
, pp. e1000513
-
-
Ko, C.H.1
Yamada, Y.R.2
Welsh, D.K.3
-
25
-
-
77951927020
-
Suprachiasmatic nucleus: cell autonomy and network properties
-
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 2010; 72: 551-577.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
Takahashi, J.S.2
Kay, S.A.3
-
26
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 2006; 38: 369-374.
-
(2006)
Nat Genet
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
27
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N, Yoo SH, Huang HC et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338: 349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.H.2
Huang, H.C.3
-
28
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia K, Papp S, Yu R et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011; 480: 552-556.
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.1
Papp, S.2
Yu, R.3
-
29
-
-
5444225805
-
Elongation by RNA polymerase II: the short and long of it
-
Sims RJ 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18: 2437-2468.
-
(2004)
Genes Dev
, vol.18
, pp. 2437-2468
-
-
Sims, R.J.1
Belotserkovskaya, R.2
Reinberg, D.3
-
30
-
-
70249104647
-
Defining mechanisms that regulate RNA polymerase II transcription in vivo
-
Fuda N, Ardehali M, Lis J. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009; 461: 186-192.
-
(2009)
Nature
, vol.461
, pp. 186-192
-
-
Fuda, N.1
Ardehali, M.2
Lis, J.3
-
31
-
-
2942528748
-
C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats
-
Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J Biol Chem 2004; 279: 24957-24964.
-
(2004)
J Biol Chem
, vol.279
, pp. 24957-24964
-
-
Jones, J.C.1
Phatnani, H.P.2
Haystead, T.A.3
MacDonald, J.A.4
Alam, S.M.5
Greenleaf, A.L.6
-
32
-
-
37249015899
-
Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
-
Chapman RD, Heidemann M, Albert TK et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007; 318: 1780-1782.
-
(2007)
Science
, vol.318
, pp. 1780-1782
-
-
Chapman, R.D.1
Heidemann, M.2
Albert, T.K.3
-
33
-
-
23844519339
-
A high-resolution map of active promoters in the human genome
-
Kim TH, Barrera LO, Zheng M et al. A high-resolution map of active promoters in the human genome. Nature 2005; 436: 876-880.
-
(2005)
Nature
, vol.436
, pp. 876-880
-
-
Kim, T.H.1
Barrera, L.O.2
Zheng, M.3
-
34
-
-
34447098370
-
A chromatin landmark and transcription initiation at most promoters in human cells
-
Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007; 130: 77-88.
-
(2007)
Cell
, vol.130
, pp. 77-88
-
-
Guenther, M.G.1
Levine, S.S.2
Boyer, L.A.3
Jaenisch, R.4
Young, R.A.5
-
35
-
-
34249026300
-
High-resolution profiling of histone methylations in the human genome
-
Barski A, Cuddapah S, Cui K et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129: 823-837.
-
(2007)
Cell
, vol.129
, pp. 823-837
-
-
Barski, A.1
Cuddapah, S.2
Cui, K.3
-
36
-
-
33847070442
-
The role of chromatin during transcription
-
Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128: 707-719.
-
(2007)
Cell
, vol.128
, pp. 707-719
-
-
Li, B.1
Carey, M.2
Workman, J.L.3
-
37
-
-
79952901680
-
Enhancer function: new insights into the regulation of tissue-specific gene expression
-
Ong CT, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 2011; 12: 283-293.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 283-293
-
-
Ong, C.T.1
Corces, V.G.2
-
38
-
-
79951516056
-
A unique chromatin signature uncovers early developmental enhancers in humans
-
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 2011; 470: 279-283.
-
(2011)
Nature
, vol.470
, pp. 279-283
-
-
Rada-Iglesias, A.1
Bajpai, R.2
Swigut, T.3
Brugmann, S.A.4
Flynn, R.A.5
Wysocka, J.6
-
39
-
-
78650758676
-
Histone H3K27ac separates active from poised enhancers and predicts developmental state
-
Creyghton MP, Cheng AW, Welstead GG et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010; 107: 21931-21936.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 21931-21936
-
-
Creyghton, M.P.1
Cheng, A.W.2
Welstead, G.G.3
|