메뉴 건너뛰기




Volumn 64, Issue , 2015, Pages 347-359

Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data

Author keywords

Clustering; Gene expression data; General type 2 fuzzy sets; Simulated annealing; plane representation

Indexed keywords

ALGORITHMS; CLUSTER ANALYSIS; FUZZY CLUSTERING; FUZZY SETS; GENE EXPRESSION; GENES; HEURISTIC ALGORITHMS; OPTIMIZATION; SIMULATED ANNEALING;

EID: 84940436489     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2014.06.017     Document Type: Article
Times cited : (23)

References (52)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphomas by gene expression profiling
    • Alizadeh A.A., Eisen M.B., Davis R., Ma C., Lossos I., Rosenwald A., et al. Distinct types of diffuse large b-cell lymphomas by gene expression profiling. Nature 2000, 403:503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.3    Ma, C.4    Lossos, I.5    Rosenwald, A.6
  • 7
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy c-means method for clustering microarray data
    • Dembele D., Kastner P. Fuzzy c-means method for clustering microarray data. Bioinformatics 2003, 19(8):973-980.
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 8
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation
    • Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Nat. Acad. Sci. U.S.A. 1999, 96:2907-2912.
    • (1999) Proc. Nat. Acad. Sci. U.S.A. , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Dmitrovsky, E.6
  • 9
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. U.S.A. 1999, 96:6745-6750.
    • (1999) Proc. Nat. Acad. Sci. U.S.A. , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 10
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters
    • Lukashin A.V., Fuchs R. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 2001, 17(5):405-414.
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 12
    • 84902475518 scopus 로고    scopus 로고
    • Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords
    • Luque-Baena R.M., Urda D., Gonzalo Claros M., Franco L., Jerez J.M. Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords. J. Biomed. Inf. 2014, 49:32-44.
    • (2014) J. Biomed. Inf. , vol.49 , pp. 32-44
    • Luque-Baena, R.M.1    Urda, D.2    Gonzalo Claros, M.3    Franco, L.4    Jerez, J.M.5
  • 13
    • 84873206321 scopus 로고    scopus 로고
    • An evolutionary computational model applied to cluster analysis of DNA microarray data
    • Castellanos-Garzon J.A., Diaz F. An evolutionary computational model applied to cluster analysis of DNA microarray data. Expert Syst. Appl. 2013, 40:2575-2591.
    • (2013) Expert Syst. Appl. , vol.40 , pp. 2575-2591
    • Castellanos-Garzon, J.A.1    Diaz, F.2
  • 14
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data
    • Maulik U., Mukhopadhyay A. Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data. Comput. Oper. Res. 2010, 37:1369-1380.
    • (2010) Comput. Oper. Res. , vol.37 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 15
    • 79151474328 scopus 로고    scopus 로고
    • Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method
    • Lee C.P., Lin W.S., Chen Y.M., Kuo B.J. Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method. Expert Syst. Appl. 2011, 38:4661-4667.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 4661-4667
    • Lee, C.P.1    Lin, W.S.2    Chen, Y.M.3    Kuo, B.J.4
  • 16
    • 70350572773 scopus 로고    scopus 로고
    • Interval based fuzzy systems for identification of important genes from microarray gene expression data: application to carcinogenic development
    • De R.K., Ghosh A. Interval based fuzzy systems for identification of important genes from microarray gene expression data: application to carcinogenic development. J. Biomed. Inf. 2009, 42:1022-1028.
    • (2009) J. Biomed. Inf. , vol.42 , pp. 1022-1028
    • De, R.K.1    Ghosh, A.2
  • 17
    • 84880578362 scopus 로고    scopus 로고
    • OLYMPUS: an automated hybrid clustering method in time series gene expression. Case study: host response after Influenza A (H1N1) infection
    • Dimitrakopoulou K., Vrahatis A.G., Wilk E., Tsakalidis A.K., Bezerianos A. OLYMPUS: an automated hybrid clustering method in time series gene expression. Case study: host response after Influenza A (H1N1) infection. Comput. Methods Programs Biomed. 2013, 111:650-661.
    • (2013) Comput. Methods Programs Biomed. , vol.111 , pp. 650-661
    • Dimitrakopoulou, K.1    Vrahatis, A.G.2    Wilk, E.3    Tsakalidis, A.K.4    Bezerianos, A.5
  • 18
    • 84887825930 scopus 로고    scopus 로고
    • A hybrid fuzzy-ontology based intelligent system to determine level of severity and treatment recommendation for benign prostatic hyperplasia
    • Doostparast Torshizi A., Fazel Zarandi M.H., Doostparast G. A hybrid fuzzy-ontology based intelligent system to determine level of severity and treatment recommendation for benign prostatic hyperplasia. Comput. Methods Programs Biomed. 2014, 113:301-313.
    • (2014) Comput. Methods Programs Biomed. , vol.113 , pp. 301-313
    • Doostparast Torshizi, A.1    Fazel Zarandi, M.H.2    Doostparast, G.3
  • 19
    • 84896859764 scopus 로고    scopus 로고
    • Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models
    • Foster B., Bagci U., Xu Z., Dey B., Luna B., Bishai W., Jain S., Mollura D.J. Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans. Biomed. Eng. 2014, 61(3):711-724.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.3 , pp. 711-724
    • Foster, B.1    Bagci, U.2    Xu, Z.3    Dey, B.4    Luna, B.5    Bishai, W.6    Jain, S.7    Mollura, D.J.8
  • 20
    • 84892807894 scopus 로고    scopus 로고
    • Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images
    • Hassan M., Chaudhry A., Khan A., Iftikhar M.A. Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images. Comput. Methods Programs Biomed. 2014, 113:593-609.
    • (2014) Comput. Methods Programs Biomed. , vol.113 , pp. 593-609
    • Hassan, M.1    Chaudhry, A.2    Khan, A.3    Iftikhar, M.A.4
  • 21
    • 84883792037 scopus 로고    scopus 로고
    • Automatic segmentation of corpus collasum using Gaussian mixture modeling and Fuzzy C means methods
    • Icer S. Automatic segmentation of corpus collasum using Gaussian mixture modeling and Fuzzy C means methods. Comput. Methods Programs Biomed. 2013, 112:38-46.
    • (2013) Comput. Methods Programs Biomed. , vol.112 , pp. 38-46
    • Icer, S.1
  • 23
    • 81155139721 scopus 로고    scopus 로고
    • Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities
    • Fazel Zarandi M.H., Faraji M.R., Karbasian M. Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities. Appl. Soft Comput. 2012, 12:291-301.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 291-301
    • Fazel Zarandi, M.H.1    Faraji, M.R.2    Karbasian, M.3
  • 24
  • 25
    • 84861574837 scopus 로고    scopus 로고
    • Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review
    • Castillo O., Melin P. Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 2012, 205:1-19.
    • (2012) Inf. Sci. , vol.205 , pp. 1-19
    • Castillo, O.1    Melin, P.2
  • 26
    • 33947430572 scopus 로고    scopus 로고
    • Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means
    • Hwang C., Rhee F. Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans. Fuzzy Syst. 2007, 15(1):107-120.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.1 , pp. 107-120
    • Hwang, C.1    Rhee, F.2
  • 27
    • 0035247535 scopus 로고    scopus 로고
    • Centroid of a type-2 fuzzy set
    • Karnik N.N., Mendel J.M. Centroid of a type-2 fuzzy set. Inf. Sci. 2001, 132:195-220.
    • (2001) Inf. Sci. , vol.132 , pp. 195-220
    • Karnik, N.N.1    Mendel, J.M.2
  • 28
    • 84867381731 scopus 로고    scopus 로고
    • General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering
    • Linda O., Manic M. General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 2013, 20(5):883-897.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.5 , pp. 883-897
    • Linda, O.1    Manic, M.2
  • 29
    • 9544250381 scopus 로고    scopus 로고
    • A cluster validation index for GK cluster analysis based on a relative degree of sharing
    • Kim Y., Kim D., Lee D., Lee K.H. A cluster validation index for GK cluster analysis based on a relative degree of sharing. Inf. Sci. 2004, 168:225-242.
    • (2004) Inf. Sci. , vol.168 , pp. 225-242
    • Kim, Y.1    Kim, D.2    Lee, D.3    Lee, K.H.4
  • 30
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • Bezdek J.C. Cluster validity with fuzzy sets. Cybern. Syst. 1973, 3(3):58-73.
    • (1973) Cybern. Syst. , vol.3 , Issue.3 , pp. 58-73
    • Bezdek, J.C.1
  • 31
    • 36148971216 scopus 로고    scopus 로고
    • Validation criteria for enhanced fuzzy clustering
    • Celikyilmaz A., Turksen I.B. Validation criteria for enhanced fuzzy clustering. Pattern Recognit. Lett. 2008, 29:97-108.
    • (2008) Pattern Recognit. Lett. , vol.29 , pp. 97-108
    • Celikyilmaz, A.1    Turksen, I.B.2
  • 34
    • 59149086825 scopus 로고    scopus 로고
    • A comparative study of ranking methods, similarity measures, and uncertainty measures for interval type-2 fuzzy sets
    • Wu D., Mendel J.M. A comparative study of ranking methods, similarity measures, and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 2009, 179:1169-1192.
    • (2009) Inf. Sci. , vol.179 , pp. 1169-1192
    • Wu, D.1    Mendel, J.M.2
  • 36
    • 80055031429 scopus 로고    scopus 로고
    • MiniMax ε-stable cluster validity index for type-2 fuzziness
    • Ozkan I., Turksen I.B. MiniMax ε-stable cluster validity index for type-2 fuzziness. Inf. Sci. 2012, 84:64-74.
    • (2012) Inf. Sci. , vol.84 , pp. 64-74
    • Ozkan, I.1    Turksen, I.B.2
  • 38
    • 33645552696 scopus 로고    scopus 로고
    • Effect of data normalization on fuzzy clustering of DNA microarray data
    • Kim S.Y., Lee J.W., Bae J.S. Effect of data normalization on fuzzy clustering of DNA microarray data. BMC Bioinf. 2006, 7(134):1-14.
    • (2006) BMC Bioinf. , vol.7 , Issue.134 , pp. 1-14
    • Kim, S.Y.1    Lee, J.W.2    Bae, J.S.3
  • 40
  • 41
    • 84867357760 scopus 로고    scopus 로고
    • Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets
    • Linda O., Manic M. Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 2012, 20(5):805-819.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.5 , pp. 805-819
    • Linda, O.1    Manic, M.2
  • 42
    • 79958014397 scopus 로고    scopus 로고
    • Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm
    • Zhai D., Mendel J.M. Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm. IEEE Trans. Fuzzy Syst. 2011, 19(3):401-422.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.3 , pp. 401-422
    • Zhai, D.1    Mendel, J.M.2
  • 43
    • 70350064580 scopus 로고    scopus 로고
    • α-Plane representation for type-2 fuzzy sets: theory and application
    • Mendel J.M., Liu F., Zhai D. α-Plane representation for type-2 fuzzy sets: theory and application. IEEE Trans. Fuzzy Syst. 2009, 17(5):1189-1207.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.5 , pp. 1189-1207
    • Mendel, J.M.1    Liu, F.2    Zhai, D.3
  • 44
    • 39749103791 scopus 로고    scopus 로고
    • An efficient centroid type-reduction strategy for general type-2 fuzzy logic system
    • Liu F. An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 2008, 178:2224-2236.
    • (2008) Inf. Sci. , vol.178 , pp. 2224-2236
    • Liu, F.1
  • 45
    • 84901232103 scopus 로고    scopus 로고
    • A new cluster validity measure based on general type-2 fuzzy sets: application in gene expression data clustering
    • Doostparast Torshizi A., Fazel Zarandi M.H. A new cluster validity measure based on general type-2 fuzzy sets: application in gene expression data clustering. Knowl. Based Syst. 2014.
    • (2014) Knowl. Based Syst.
    • Doostparast Torshizi, A.1    Fazel Zarandi, M.H.2
  • 46
    • 0032178397 scopus 로고    scopus 로고
    • Cluster validity index for fuzzy clustering
    • Kwon S.H. Cluster validity index for fuzzy clustering. Electron. Lett. 1998, 34(22):2176-2177.
    • (1998) Electron. Lett. , vol.34 , Issue.22 , pp. 2176-2177
    • Kwon, S.H.1
  • 49
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuv P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20:53-65.
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuv, P.1
  • 50
    • 84940442362 scopus 로고    scopus 로고
    • Data clustering: a review, ACM Comput. Rev.
    • A. K. Jain, M. Murthy, P. Flynn, Data clustering: a review, ACM Comput. Rev.
    • Jain, A.K.1    Murthy, M.2    Flynn, P.3
  • 51
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted Chinese restaurant process
    • Qin Z.S. Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 2006, 22(16):1988-1997.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1988-1997
    • Qin, Z.S.1
  • 52
    • 84940442363 scopus 로고    scopus 로고
    • http://www.isical.ac.in/~bioinfo_miu/Data.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.